

INVESTMECH (Pty) Ltd

Reg. No. 1998/07367/07 • VAT Reg.No. 4490189489 PostNet Suite #251, Private Bag X1015, Lyttelton, 0140 • www.investmech.com Tel +27 12 664-7604 • Fax +27 86535-1379• Cell: +27 82 445-0510 E-mail address: <u>mheyns@investmech.com</u>

Design of aluminium alloys structures

IAB Module 3.10

Prepared for

Universities

DIRECTORS: M Heyns Pr.Eng., Ph.D., (Managing) CJ Botha B.Eng(Hons): Industrial

Document No: IM-TR000 Revision: 0.0 Date: 13 August 2018

Document information

Project Name:	IAB Module 3.10
Title:	Design of aluminium alloys structures
Author:	Dr. Michiel Heyns Pr.Eng.
Project Engineer:	Dr. Michiel Heyns Pr.Eng.
Document Number:	IM-TR000
Filename:	Investmech (Design of aluminium alloys structures) TR R0.0
Creation Date:	22 August 2013
Revision:	0.0
Revision Date:	13 August 2018

Approval

Responsibility	Name	Designation	Signature	Date
Checked by:				
Approved by:				

Distribution list

Name	Company / Division	Copies
Weld fatigue students	Universities	1
DCC (Tenders & Quotations)	Investmech (Pty) Ltd	Original

Summary

This document presents the study notes for the fatigue design of aluminium alloy structures.

Software applications The following software applications were used in the execution of this project:

Product Name	Version
MSWord	2010
MS PowerPoint	2010
MS Excel	2010

Calculation files

The following calculation files were used in the analysis:

Description	File Name	Revision
None		

Models

The following models were used in the analysis:

Model Title	Model Number	Revision
None		

Input Data Files

The following input files are applicable:

Description	File Name
PowerPoint slides	Investmech - Structural Integrity (Design of aluminium alloys structures) R0.0.pptx

Output Data Files The following output files are applicable:

Description	File Name
MS Word document with problems done in class as well as notes made in class. This document will be submitted by e-mail to class members after completion of the module	Class notes.docx. The same notes document is used for both days to have all in one document.
MS Excel document with calculations done in class	Class calculations.xlsx. The same Excel document is used for both days to have all in one document.

Table of Contents

1.	INTR	RODUCTION	6
2.	STU	DY MATERIAL	6
3.	MOD	DULE DETAIL	6
	3.1.	Objectives	6
	3.2.	Scope – Teaching hours = 4	6
	3.3.	Outcome	6
4.	BAC	KGROUND	7
	4.1.	The heat-affected zone	7
	4.2.	Stress-strain response of aluminium	12
5.	FATI	IGUE DESIGN ACCORDING TO EN 1999-1-3	13
	5.1.	Scope of EN 1999	13
	5.2.	Assessment methods	13
	5.3.	Partial factors for fatigue loads	16
	5.4.	Materials, constituent products and connecting devices	16
	5.5.	Finite element analysis	16
	5.6.	Stresses	17
	5.7.	Nominal and modified stresses	17
	5.8.	Calculation of equivalent stress range for standardised fatigue load models	19
	5.9.	Fatigue resistance and construction details	19
	5.10.	Mean stress effects	20
	5.10.	.1. Plain material and mechanically fastened joints	20
	5.10.	.2. Welded joints	20
	5.10.	.3. Adhesive joints	20
	5.10.	.4. Low endurance range	20
	5.10.	.5. Cycle counting for R-ratio calculations	20
	5.11.	Effect of exposure conditions	21
	5.12.	Post-weld improvement techniques	21
	5.13.	Conditions for fatigue susceptibility	22
	5.14.	Inspection strategy for damage tolerant design	22
	5.15.	Castings – Detail categories	24
	5.16.	Detail categories for aluminium	25
	5.16.	.1. For plain members	26
	5.16.	 Members with welded attachments – transverse weld toe 	27
	5.16.	.3. Detail categories for members with longitudinal welds	28
	5.16.	.4. Butt-welded joints between members	29
	5.16.	.5. Fillet-welded joints between members	30
	5.16.	.6. Crossing welds on built-up beams	31
	5.16.	.7. Attachments on built-up beams	32
	5.16.	.8. Bolted joints	33
6.	REFI	ERENCES	34

List of Tables

Table 1: Recommended partial strength for fatigue $(\gamma M f)$ values in relation to design approach and
consequence class (EN 1999-1-3, 2007:100)15
Table 2: Recommended partial factors for fatigue loads, γFf , for intensity and number of cycles in the
fatigue load spectrum (EN 1999-1-3, 2007:21) 16
Table 3: Number of detail categories which should be reduced according to exposure conditions and
alloy (EN 1999-1-3, 2007:36)
Table 4: Recommended safe values of detectable surface crack length (EN 1999-1-3, 2007:43) 22
Table 5: Numerical values of $\Delta\sigma$ [in MPa] for plain material (EN 1999-1-3, 2007:77)
Table 6: Numerical values of $\Delta \sigma$ [in MPa] for bolted joints (EN 1999-1-3, 2007:78)
Table 7: Detail categories for plain members - extraction from EN 1999-1-3 Table J.1 (2007:79) 26
Table 8: Detail categories for members with welded attachments - transverse weld toe - extraction
from EN 1999-1-3 Table J.3 (2007:81)
Table 9: Detail categories for members with longitudinal welds - extraction from EN 1999-1-3 Table
J.5 (2007:83)
Table 10: Detail categories for butt-welded joints between members - extraction from EN 1999-1-3
Table J.7 (2007:85)

Table 11: Detail categories for fillet-welded joints between members - extraction from EN 1999-1-3
Table J.9 (2007:87)
Table 12: Detail categories for crossing welds on built-up beams - extraction from EN 1999-1-3 Table
J.11 (2007:89)
Table 13: Detail categories for attachments on built-up beams - extraction from EN 1999-1-3 Table
J.13 (2007:91)
Table 14: Detail categories for bolted joints - extraction from EN 1999-1-3 Table J.15 (2007:93) 33

List of Figures

Figure 1:	Local stress concentration at a weld toe (EN 1999-1-3, 2007:26)	18
Figure 2:	Gross stress concentration at a large opening (EN 1999-1-3, 2007:26)	18
Figure 3:	Hard point dependent stress concentration (EN 1999-1-3, 2007:26)	19
Eiguro 4.	Increasing strategy for demage telerent design (EN 1000 1.2, 2007:42)	າງ

Figure 4: Inspection strategy for damage tolerant design (EN 1999-1-3, 2007:43) 23

1. INTRODUCTION

This document presents the class notes for the fatigue design of aluminium alloy structures.

2. STUDY MATERIAL

The student shall arrange access to the following documents:

EN 1999-1-3. 2007. Design of aluminium structures – Part 1-3: Structures susceptible to fatigue. *European Committee for Standardization, Ref. No. EN 1999-1-3:2007/A1:2011:E.*

Other materials are referenced and used in the slides. In the references section of this document information used are referenced.

3. MODULE DETAIL

3.1. Objectives

The objective of this section is to understand in detail the behaviour of welded aluminium structures with respect to strength, stresses and design.

3.2. Scope – Teaching hours = 4

The scope of theory covered is:

- 1. Comparison of design between steel and aluminium structures
- 2. Lightweight structures
- 3. Standard alloys for practical use and relevant stresses and strains
- 4. Effects of heat affected zone (HAZ) (softening)
- 5. Special design principles regarding profiles
- 6. Significance of defects
- 7. Range of application:
 - a. Vehicles
 - b. Rolling stock
 - c. Ships
 - d. Aircraft
 - e. Vessels
 - f. Space
- 8. Dimensioning according to different standards and specifications
- 9. Worked examples

3.3. Outcome

After completion of this section you will be able to:

- 1. Explain fully the occurrence of softening in the heat affected zone (HAZ).
- 2. Design aluminium profiles for a given use.
- 3. Explain fully how to solve the most common imperfections on aluminium welds.
- 4. Detail the causes and development of stresses and strains in an aluminium weld.
- 5. Detail the strength of different alloys.
- 6. Deduce the correct selection of alloys for given applications.

Presentation used in class:	Investmech - Structural Integrity (Design of aluminium alloys structures) R0.0.pptx
Download link for slides:	www.investmech.com/weld

4. BACKGROUND

<u>Wrought Aluminium</u> is produced by smelting pure Al ingots with specific alloying elements required to make the specific grade of aluminium. Wrought aluminium has exceptional mechanical properties and can be formed into the required shapes.

Wrought aluminium an be identified by four-digit number as follows:

ABCD

where:

A Indicates the principal alloying elements. Is the most important indication.

B Indicates, unless it is a 0, a modification of the alloy.

C and D are identification numbers for the specific alloy.

<u>Cast Aluminium</u> contains larger percentages of alloying elements than wrought aluminium. Casting defects results in cast aluminium having a generally lower tensile strength than wrought aluminium.

4.1. The heat-affected zone

According to: <u>http://www.esabna.com/us/en/education/knowledge/qa/Heat-Affected-Zone-of-Arc-Welded-Aluminum-Alloys.cfm</u>

- 1. Considering the seven aluminium series used for wrought alloys, the main alloying elements used for producing each of the alloy series are immediately identifiable:
 - a. **1xxx**: Aluminium >= 99.00%
 - i. Almost pure aluminium
 - ii. Will respond to strain hardening (especially if containing appreciable amounts of impurities such as iron & silicon)
 - iii. Have very low strength in the strain hardened condition compared to other Al alloys
 - iv. Applications:
 - 1. Aluminium foil
 - 2. Electrical buss bars
 - 3. Metalizing wire
 - 4. Chemical tanks
 - 5. Chemical piping
 - b. **2xxx**: Copper (AI + Cu)
 - i. Contain between 2% to 6% copper + small additions of other elements
 - ii. Cu:
 - 1. Provides substantial increase in strength
 - 2. Facilitates precipitation hardening
 - iii. Include some of the highest strength heat treatable aluminium alloys
 - iv. Applications:
 - 1. Aerospace
 - 2. Military vehicles
 - 3. Rocket fins
 - c. 3xxx: Manganese (AI + Mn)
 - i. Addition of Mn:
 - 1. Increases strength to through solution strengthening
 - 2. Improves strain hardening

- 3. Does not significantly reduce ductility or corrosion resistance
- ii. Moderate strength non-heat treatable materials that retain strength at elevated temperatures
- iii. Rarely used for major structural applications
- iv. Applications:
 - 1. Cooking utensils
 - 2. Radiators
 - 3. Air condition condensers
 - 4. Evaporators
 - 5. Heat exchangers
 - 6. Beverage containers
 - 7. Residential siding
 - 8. Handling equipment
 - 9. Storage equipment
- d. 4xxx: Silicon (AI + Si)
 - i. Addition of Si:
 - 1. Reduces T_{melt}
 - 2. Improves fluidity
 - 3. +Si alone produces non-heat treatable alloy
 - 4. +Si + Mg produces precipitation heat treatable alloy
 - ii. Applications of Al + Si:
 - 1. Al castings
 - iii. Application of Al + Si + Mg:
 - 1. Filler wires for fusion welding & brazing of Al
- e. **5xxx**: Magnesium (AI + Mg)
 - i. Addition of Mg:
 - 1. Increases mechanical properties through solid strengthening
 - 2. Improves strain hardening ability
 - a. Strain hardens quickly \rightarrow difficult and expensive to extrude
 - ii. Are the highest strength non-heat treatable alloys
 - iii. Optimal and extensively used for structural applications
 - iv. Produced as sheet & plate & extrusions
 - v. Applications:
 - 1. Truck and train bodies
 - 2. Buildings
 - 3. Armored vehicles
 - 4. Ships and boats
 - 5. Chemical tankers
 - 6. Pressure vessels
 - 7. Cryogenic tanks
- f. 6xxx: Magnesium and Silicon (AI + Mg₂Si)
 - i. Al + Mg + Si:
 - 1. Produces compound magnesium-silicide (Mg₂Si)
 - 2. Provides heat treatability
 - ii. Extrude easily and economically
 - iii. Forms an important complementary system with 5xxx series alloys
 - 1. 5xxx used as plate
 - 2. 6xxx used in extruded form
 - iv. Applications:
 - 1. Handrails
 - 2. Drive shafts
 - 3. Automotive frame sections
 - 4. Bicycle frames

- 5. Tubular lawn furniture
- 6. Scaffolding
- 7. Stiffeners & braces used on trucks, boats & other structural fabrications
- g. **7xxx**: Zinc (Al + Zn)
 - i. Al + Zn
 - 1. +Mg and or +Cu
 - a. Heat treatable aluminium alloys of the highest strength
 - 2. Increases strength
 - 3. Permits precipitation hardening
 - Susceptible to stress corrosion cracking

 Not usually fusion welded
 - 5. Other alloys within 7xxx series often fusion welded with excellent results
 - ii. Applications:
 - 1. Aerospace
 - 2. Armored vehicles
 - 3. Baseball bats
 - 4. Bicycle frames
- 2. Aluminium and its strength
 - a. Al alloys both heat treatable and non-heat treatable
 - b. Addition of alloying elements:
 - i. Is the principal method used to produce selection of different materials
 - ii. Facilitates improvement in alloy physical and/or mechanical properties
 - iii. Provide improvement in work hardening and/or precipitation hardening characteristics
- 3. Work hardening
 - a. Used to produce strain-hardened tempers in non-heat treatable AI alloys
 - b. Important process that increases strength that heat treatment cannot strengthen
 - c. Involves change of shape
 - i. As deformation proceeds alloy becomes
 - 1. Stronger
 - 2. Less ductile
 - ii. Strain hardened temper of H18, full-hard material is obtainable with a cold work equal to about a 75% reduction in area
 - iii. H16, H14 & H12 tempers obtained with lesser amounts of cold working represent ³/₄ hard, ¹/₂ hard and ¹/₄ hard conditions, respectively
- 4. Precipitation hardening
 - a. Also called age hardening or particle hardening. It is a heat treatment technique used to increase σ_0 (yield strength) of malleable materials (most structural alloys of aluminium, magnesium, nickel, titanium, and some steels and stainless steels).
 - b. Precipitation heat treatment follows solution heat-treating
 - c. Solution heat-treating:
 - i. Achieved by heating material to suitable temperature
 - ii. Hold at that T for long enough time to allow constituents to enter the solid solution (alloying elements dissolve in a solid solution in the aluminium).
 - iii. Cool rapidly to hold constituents in solution, that is, prevent the alloying elements from precipitating on cooling.
 - d. Followed by precipitation hardening = artificial aging
 - i. Re-heat alloy to lower T
 - ii. Hold at this T for prescribed period (T- & t- controlled)
 - 1. To produce a metallurgical structure that provides superior mechanical properties

- 2. Do not hold too long or T too high
 - a. Become over aged \rightarrow decrease in strength
- 5. Affect of arc welding on heat affected zone (HAZ)
 - a. Melting of the base material occurs
 - b. Heat transfers through conduction into base material adjacent to the weld
 - c. Weldment divided into following areas
 - i. Weld metal
 - ii. Heat-affected zone (HAZ)
 - iii. Base material (unaffected by welding operation)
 - d. HAZ:
 - i. Experiences cycles of heating and cooling during welding
 - ii. Materials that were strengthened by work or precipitation hardening:
 - 1. Change its properties
 - 2. May be extremely different than that of the original base alloy & base material
 - e. Non-heat treatable alloys & HAZ:
 - i. Al alloys strengthened by strain hardening
 - 1. Can be restored to a full soft, ductile condition by annealing
 - ii. Annealing:
 - 1. Eliminates the strain hardening
 - 2. Eliminates the microstructure caused by cooled working
 - iii. <u>THEREFORE</u>
 - 1. <u>Tensile strength for as-welded non-heat treatable alloys = annealed</u> <u>strength of the base alloy, see typical values below</u>

Typical Tensile Strength Properties of Groove Welds

Ν	lon-Heat Treatable Alloy	/5
Base Alloy & Temper	Base Alloy Tensile Strength - ksi	As welded Tensile Strength - ksi
1060-H18	19	10
5052-H32	33	27
5052-H39	42	27
5086-H34	47	38
5086-H38	53	38
5083-H116	46	43
3003-H34	35	16
3004-H38	41	24

- f. Heat treatable alloys:
 - i. HAZ:
 - 1. Not maintained at adequate T for sufficient period
 - 2. Will not be fully annealed
 - ii. Affect on HAZ of heat treatable alloys welded in the solution heat-treated and artificially aged condition one of partially annealed and over-aged
 - iii. The higher the heat input the lower the as-welded strength
 - iv. See values below

Typical Tensile Strength Properties of Groove Welds

Heat Treatable Alloys

Base Alloy & Temper	Base Alloy Tensile Strength - ksi	As welded Tensile Strength - ksi
6063-T6	31	19
6061-T6	45	27
6061-T4	35	27
2219-T81	66	35
2014-T6	70	34
7005-T53	57	43

4.2. Stress-strain response of aluminium

According to Höglund (1999:18-19) the manufacturing and heating process aluminium is subject to, result in different stress-strain relationships for aluminium alloys, even for materials of the same alloys. For aluminium the elastic limit is defined as $f_{0.2}$. This limit is not enough for defining the stress-strain behavior of aluminium because the variations in modulus of elasticity and strain hardening of the material need to be taken into account. Therefore, different than with steel, these factors need to be taken into account for each different aluminium alloy. Analysis must be based upon generalized inelastic stress-strain relationships for which the Ramberg-Osgood law is commonly used.

Höglund (1999:21) summarises in Tables 2.01 and 2.02 minimum characteristic values of yield strength f_o , ultimate strength f_a and strength in the HAZ f_{HAZ} for some wrought Al alloys.

The Ramberg-Osgood constitutive model is used for Aluminium as follows:

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{B}\right)^r$$

Where E is the modulus of elasticity (Young's modulus) at the origin. Parameters B and n are as follows:

$$B = \frac{f_{0.2}}{(0.002)^{\frac{1}{n}}}$$

And

n < 10 - 20 for non – heat treated alloys n > 20 - 40 for heat – treated alloys

See Eurocode 9, Annex E.

For the calculation of stress in aluminium alloys for fatigue purposes, a linear elastic model is used for the aluminium alloy. The detail category strength are then presented for the different alloys covered by Eurocode 9.

5. FATIGUE DESIGN ACCORDING TO EN 1999-1-3

This section presents the fatigue design of aluminium alloys and focusses predominantly on the differences between the approaches for aluminium in Eurocode 9 and that of steel in Eurocode 3. At this stage the student were already exposed to the requirements of Eurocode 3 and this section will be easy to align and/or differentiate with that of Eurocode 3.

5.1. Scope of EN 1999

EN 1999:

- 1. Applies to the design of buildings & civil engineering & civil structural works in aluminium
- 2. Complies with principles and requirements for safety & serviceability of structures and the basis of their design
- 3. Concerned with requirements for:
 - a. Resistance
 - b. Serviceability
 - c. Durability
 - d. Fire resistance

EN 1999-1-3:

- 1. Gives basis for design of aluminium alloy structures with respect to limit state of fracture induced by fatigue.
- 2. Gives rules for:
 - a. Safe life design
 - b. Damage tolerant design
 - c. Design assisted by testing
- 3. Does not cover pressurised containment vessels or pipe-work

Because of weakening in heat-affected zones with aluminium, an instruction shall be compiled forbidding any modification of the structure without qualified analysis of any structural consequences, including:

- 1. Making of holes
- 2. Welding

5.2. Assessment methods

Assessment methods are the same as that of steel, of which the following is a summary:

1. Safe life design (SLD)

f.

- a. Calculation of damage accumulation during the structure's design life, or, comparing the maximum stress range with the constant amplitude fatigue limit.
- b. Provides a conservative estimate of fatigue strength and does not normally depend on in-service inspection for fatigue damage.
- c. Use upper bound loads and lower bound fatigue strength.
- d. This design approach is similar to that of steel. Only the $\Delta \sigma_c N_R$ curves are slightly different.
- e. Safe life design I (SLD-I):
 - i. Requires no programme for regular inspection
 - Safe life design II (SLD-II):
 - i. Requires a programme for general inspection
 - ii. Owners to ensure that the inspection programme is followed during the lifetime of the structure
- 2. Damage tolerant design (DTD)
 - a. DTD-I (Annex L):
 - i. Based on crack detected during inspection being repaired or the component being replaced
 - b. DTD-II (Annex L):

- i. Allows fatigue induced cracks in the structure provided that the crack is monitored and kept under control by means of a fracture mechanics based fracture control plan
- c. Guidelines:
 - Select details, materials & stress levels so that in the event of the formation of cracks a low rate of crack propagation and a long critical crack length would result
 - ii. Choose structural concepts where in the event of fatigue damage a redistribution of load effects within the structure or within the cross-section of a member can occur
 - iii. Provide crack arresting detail
 - iv. Assure that critical components and details are readily inspectable during regular inspection
 - v. Ensure that cracks can be kept under control by monitoring, or, that components are readily repairable or replaceable
- 3. Design assisted by testing
 - a. Use where:
 - i. Loads are unknown
 - ii. Response data are unknown
 - iii. Fatigue strength is unknown/unavailable
 - iv. Crack growth data not available
 - b. Must be done under controlled environment

Fatigue loading is similar to that of steel. Difference is in the use of a shift in the load spectrum as follows:

"The confidence limit to be used for the intensity of the design load spectrum should be based on the mean predicted value plus k_F standard deviations. The confidence limit to be used for the number of cycles in the design load spectrum should be based on the mean predicted value plus k_N standard deviations. Values of k_F and k_N may be defined in the national annex. The numerical values $k_F = 2$ and $k_N = 2$ are recommended." (EN 1999-1-3, 2007:20).

The EN 1999-1-3 recommended partial factors for fatigue are summarised in Table 1.

Table 1: Recommended partial strength for fatigue (γ_{Mf}) values in relation to design approachand consequence class (EN 1999-1-3, 2007:100)

		Cons	sequence	class
Design approach	Design procedure	CC1	CC2	CC3
0 11		$\gamma^{a b c d}_{Mf}$	$\gamma^{a b c d}_{Mf}$	$\gamma^{a b c d}_{Mf}$
	Damage accumulation	1.1	1.2	1.3
SLD-I	Constant amplitude fatigue (i.e. max ($\Delta \sigma_{E,d}$ <	11	12	13
	$\Delta \sigma_{D,d}$)			
	Damage accumulation	1.0	1.1	1.2
SLD-II	Constant amplitude fatigue (i.e. max ($\Delta \sigma_{E,d} < \Delta \sigma_{D,d}$)	1.0	1.1	1.2
DTD-I	Damage accumulation	1.0	1.0	1.1
DTD-II	Damage accumulation	1.0	1.0	1.1

NOTES:

a. The values of the table may be reduced according to footnotes a to d below provided that the value of $\gamma_{Mf} \geq 1.0$

b. The above tabled γ_{Mf} values may be reduced by 0.1 if one of the following conditions apply:

- i. Non-welded areas of welded components
- ii. Detail categories where $\Delta \sigma_c < 25 MPa$
- iii. Welded components where the largest stress range represents all cycles
- iv. Additional NDT for a minimum of 50% is carried out
- v. For adhesively bonded joints see EN 1999-1-3 Annex E(5)

c. The above tabled γ_{Mf} values may be reduced by 0.2 if one of the following conditions apply:

- i. Non-welded areas of welded component where the largest stress range represents all cycles
- ii. Detail categories where $\Delta \sigma_c < 25 MPa$ & where the largest stress range represents all cycles.
- iii. Non-welded components and structures.
- iv. Additional NDT for a minimum 50% is carried out where the largest stress range represents all cycles.
- v. If additional NDT of 100% is carried out
- d. The above tabled γ_{Mf} values may be reduced by 0.3 if one of the following conditions apply:
 - i. Non-welded components and structure where the largest stress range represents all cycles
 - ii. Additional NDT for 100% is carried out where the largest stress range represents all cycles

Consequence classes:

CC1: Low

CC2: Moderate

CC3: Severe, loss of human life

5.3. Partial factors for fatigue loads

The design load (F_{Ed}) to use in terms of the fatigue loads (F_{Ek}) :

$$F_{Ed} = \gamma_{Ff} F_{Ek} \tag{1}$$

Where:

 γ_{Ff} is the partial factor for fatigue loads and $\gamma_{Ff} = 1.0$ is recommended (Same as with steel).

However, where fatigue loads have been based on confidence limits other than those in two standard deviation shifts of the mean, the values in Table 2 are recommended

Table 2: Recommended partial factors for fatigue loads, γ_{Ff} , for intensity and number of cyclesin the fatigue load spectrum (EN 1999-1-3, 2007:21)

<i>k</i> _	γ_{Ff}				
κ _F	$k_N = 0$	$k_N = 2$			
0	1.5	1.4			
1	1.3	1.2			
2	1.1	1.0			

5.4. Materials, constituent products and connecting devices

EN 1999-1-3:

- 1. Apply to constituent products in components and structures listed in 1999-1-1:05-2005 with the exception of low strength alloys:
 - a. EN AW 3005 in all tempers
 - b. EN AW 3103 in all tempers
 - c. EN AW 5005 in all tempers
 - d. EN AW 8011A in all tempers
 - e. EN AW 6060 in temper T5

No reliable fatigue data exist for the above mentioned low strength alloys. Tests shall be carried out to obtain fatigue strength data. Or, use peer reviewed research papers.

- 2. Covers components:
 - a. With hollow and open sections
 - b. Member built up from combinations of these
- 3. Covers the following connecting devices:
 - a. Arc welding (metal inert gas & tungsten inert gas)
 - b. Steel bolts shall be analysed as listed in EN 1999-1-1 Table 3.4.
 - c. Adhesive bonding.
- 4. Apply EN 1993-1-9 Table 8.1 for fatigue design & verification of steel bolts in tension and shear.
- 5. Fatigue strength data applicable under:
 - a. Normal atmospheric conditions with $T \le 100 \ ^{\circ}C$
 - b. For EN AW 5083 only applicable for $T \le 65 \ ^\circ C$ unless an efficient corrosion preventing coating is provided

5.5. Finite element analysis

In the calculation of stress using a finite element analysis, a <u>linear elastic constitutive model</u> shall be used except where strain data have been obtained from prototype structures or scaled physical models.

Beam elements:

- 1. Should be applicable for global analysis of beam, framed or latticed structures.
- 2. Should not be used:

- a. Fatigue analysis of stiffened plate structures of flat or shell type members or for cast or forged members unless of simple prismatic form
- 3. Use linear elastic theory assuming plane sections remain plain to calculate:
 - a. Axial stiffness
 - b. Bending stiffness
 - c. Shear stiffness
 - d. Torsional stiffness
 - Consider warping due to torsion.
- 4. Open section members or hollow section members prone to warping, which are subjected to torsional forces:
 - a. Give beam elements at least 7 degrees of freedom including warping
 - b. Alternatively, use shell elements to model the cross-section
- 5. Take the increased stiffness due to the size of the joint and the presence of additional components (gussets, splice plates, etc.) into account in the section properties for beam elements adjacent to member intersections
- 6. "Stiffness properties of beam elements used to model joint regions at angled intersections between open or hollow members where their cross-sections are not carried fully through the joint (unstiffened tubular nodes, etc.), or where the constructional detail is semi-rigid (bolted end plate connections, angle cleat connections, etc.), should be assessed either using shell elements or by connecting the elements via springs. The springs should possess sufficient stiffness for each degree of freedom and their stiffness should be determined either by tests or by shell element models of the joint." (EN 1993-1-3, 2007:23).
- 7. Rigid link elements should be used at positions where beam elements are used to model a structure with eccentricities between member axes at joints or where actions and restraints are applied to members other than at their axes.

Use of membrane, shell and solid elements:

- 1. Should only be applicable to those parts of a structure where out-of-plane bending stresses are known to be negligible.
- Should be applicable to all structural types except where cast, forged or machined members of complex shape involving three-dimensional stress fields are used. Use solid elements in this case.
- 3. Should have a small enough mesh size in the part of the member containing the initiation site to assess the effect fully. See EN 1999-1-3 Annex D.

5.6. Stresses

The same stresses as for steel are calculated:

- 1. Nominal stresses
- 2. Modified nominal stresses
- 3. Hot spot stresses
 - a. Note that due to the large influence of the heat-affected zone in the strength of welded aluminium components, the experience from structural steel details is not generally applicable for aluminium

5.7. Nominal and modified stresses

Figures 1 to 3 summarises the relationship between the modified nominal and nominal stresses for:

- 1. Weld toes
- 2. Large openings
- 3. Hard points in connections

a) Local stress concentration at weld toe;

1- crack initiation site; 2 - linear stress distribution, weld toe stress factor at z not calculated

b) Gross stress concentration at large opening

 $\Delta \sigma$ = nominal stress range; $\Delta \sigma K_{gt}$ = modified nominal stress range at initiation site X due to the opening;3 – non-linear stress distribution; 4 – weld; 5 – large opening

Figure 2: Gross stress concentration at a large opening (EN 1999-1-3, 2007:26)

 $\Delta \sigma$ = nominal stress range; $\Delta \sigma K_{gt}$ = modified nominal stress range at initiation site X due to the geometrical stress concentration effects

Figure 3: Hard point dependent stress concentration (EN 1999-1-3, 2007:26)

Stresses are calculated similarly to that done for steel and discussed in earlier lectures.

5.8. Calculation of equivalent stress range for standardised fatigue load models

Same as for steel.

5.9. Fatigue resistance and construction details

For aluminium constructional details are divided into the following main groups (because of different alloys used and heat-affected zone affects):

- 1. Plain-members, welded members and bolted joints Annex J
- 2. Adhesively bonded joints Annex E
- 3. Castings Annex I

The fatigue strength data, $\Delta \sigma - N$ relationship, is represented by the mean line minus 2 standard deviation from the experimental data. The $\Delta \sigma - N$ fatigue strength is modelled similarly to steel, but, the $\Delta \sigma - N$ curves are slightly different. The same terminology is used as for steel:

- 1. Reference fatigue strength for the detail category
- 2. Constant amplitude fatigue limit
- 3. Cut-off limit

5.10. Mean stress effects

The fatigue strength data, $\Delta \sigma - N$ curves, refer to high tensile mean stress conditions. Compressive mean stress or low tensile mean stress may result in longer life under certain conditions.

5.10.1. Plain material and mechanically fastened joints

For applied stress ration values of $R \leq 0.5$, an enhanced fatigue strength $\Delta \sigma_{C(R)}$ may be used in place of $\Delta \sigma_{c}$:

$$\Delta \sigma_{C(R)} = f(R) \Delta \sigma_C \tag{2}$$

Note that drawn tubes and formed profiles (folded, roll-formed) may have residual stress, which are not negligible, so that an enhancement may not be allowed.

Enhancement Case I

- 1. Applies to initiation site in the base material and wrought products in structural elements remote from connections
- 2. Make allowance for pre-action or lack of fit in addition to applied stress
- 3. Enhancement factor is:

$$f(R) = \begin{cases} 1.6 & for R \le -1 \\ 1.2 - 0.4R & for -1 < R < 0.5 \\ 1.0 & for R \ge 0.5 \end{cases}$$
(3)

Enhancement Case II

- 1. Applies to initiation sites associated with welded or mechanically fastened connections in simple structural elements where the residual stress, σ_{res} , has been established and preactions and lack of fit is taken into account
- 2. Enhancement factor is:

$$\begin{split} f(R) &= \begin{cases} 1.3 & for \ R_{eff} \leq -1 \\ 0.9 - 0.4R & for \ -1 < R_{eff} < -0.25 \\ 1.0 & for \ R_{eff} \geq -0.25 \end{cases} \tag{4}$$

Enhancement Case III

- 1. Applies near welded connections and to complex structural assemblies where control of residual stresses is not practicable.
- 2. In this case f(R) = 1 for all *R*-ratios.

5.10.2. Welded joints

No allowance should be made for mean stress except:

- 1. Test results demonstrate a consistent increase in fatigue strength with decreasing mean stress
- 2. Improvement techniques are used causing residual compressive stresses that will not be reduced by yielding in service

5.10.3. Adhesive joints

No allowance without testing.

5.10.4. Low endurance range

See Annex G

5.10.5. Cycle counting for R-ratio calculations

See Annex A Figure A.2.

5.11. Effect of exposure conditions

Detail category number <u>should be downgraded</u> for certain combinations of aluminium alloys and exposure conditions. Unless efficient corrosion prevention is provided the EN 1999-1-3 fatigue strength data do not apply where the ambient temperature is:

- 1. $T > 30 \,^{\circ}C$ in marine environment
- 2. $T > 65 \,^{\circ}C$ in structural environment

Table 3 gives the reduction of categories (according to exposure conditions and alloy) for the fatigue data given in EN 1999-1-3 Annex G.

Table 3: Number of detail categories which should be reduced according to exposure
conditions and alloy (EN 1999-1-3, 2007:36)

Material			Exposure conditions							
Allow	D ₁ · · · ·	Protection	Rural	Industria	l/urban		Marine	Immersed		
Series ¹⁾	composition	ratings (En 1999-1-1)		Moderate	Severe	Non- industrial	Moderate	Severe ²⁾	Fresh water	Sea Water ²⁾
Зххх	AlMn	А	0	0	(P) ¹⁾	0	0	0	0	0
4xxx	AIMg	А	0	0	(P) ¹⁾	0	0	0	0	0
5xxx	AlMgMn	А	0	0	(P) ¹⁾	0	0	0	0	1
6xxx	AlMgSi	В	0	0	(P) ¹⁾	0	0	1	0	2
7xxx	AlZnMg	С	0	0	(P) ¹⁾	0	0	2	1	3

¹⁾ (P) very dependent on exposure conditions. Regularly maintained protection may be required to avoid risk of local exposures which may be particularly detrimental to crack initiation.

²⁾ The value of N_D should be increased from 5×10^6 cycles to 10^7 cycles.

NOTE: Downgrading is not needed for detail categories < 25 MPa.

5.12. Post-weld improvement techniques

According to EN 1999-1-3 improvement techniques are generally expensive to apply and present quality control difficulties and should not be relied upon for general design purposes, unless fatigue is particularly critical to the overall economy of the structures (2007:36). Several research papers on this topic are listed in the references of this document.

According to EN 1993-1-3 Annex H the following enhancements are applicable for welds (2007:75 – 76):

- 1. Will be beneficial where fatigue cracks would initiate at the weld toe.
- 2. Apply techniques at the most highly stressed welds, not all.
- 3. Methods:
 - a. Machining or grinding
 - b. Dressing by TIG or plasma
 - c. Peening (shot peening, needle peening or hammer peening)
- 4. Double improvements, correctly chosen off course (remember our discussion in steel), may yield the highest improvement by the combination of machining (or grinding) and peening. Be careful when you apply this.
- 5. Mid- and long fatigue life region may be increased by 30%
- 6. Improvement is lost under freely corroding conditions in water. Corrosion protection is needed if the improvement is to be achieved.
- 7. Verify design values for improved welds by testing

5.13. Conditions for fatigue susceptibility

According to EN 1999-1-3 the following should be taken into account in assessing the likelihood of susceptibility to fatigue (2007:38):

- 1. High ratio of dynamic to static loading:
 - a. Moving or lifting structures (land & sea transport vehicles, cranes, etc.)
 - b. Bridges
- 2. Frequent applications of load:
 - a. High number of cycles.
 - b. Slender structures or members with low natural frequencies prone to resonance.
 - c. Structures subject to fluid loads like wind.
 - d. Structures supporting machinery should be checked for resonance.
- 3. Use of welding:
 - a. Welded details have low fatigue strength
 - b. Also applies for attachments, even if the attachment is not considered to be structural
- 4. Complexity of joint detail:
 - a. Complex joints can result in high stress concentrations due to local variations in stiffness and load path
 - i. Can have severe effect on fatigue whilst these often have little effect on ultimate static capacity
 - ii. Ensure smoothness and simplicity of joint design
- 5. Thermal and chemical exposure:
 - a. Fatigue strength may reduce if the surface of the metal is unprotected.

5.14. Inspection strategy for damage tolerant design

EN 1999-1-3 prescribes the following inspection strategy for damage tolerant design as summarised in Figure 4:

1. Find the safe value of detectable crack length, l_d , in mm

Table 4: Recommended safe values of detectable surface crack length (EN 1999-1-3, 2007:43)

		Crack location	
Method of Inspection	Plain smooth surface	Rough surface (weld cap)	Sharp corner (weld toe)
Visual, with magnifying aid	20	30	50
Liquid penetrant testing	Crack location ethod of Inspection Plain smooth surface Rough surface (weld cap) Sharp cornertoe) val, with magnifying 20 30 50 vid penetrant testing 5 10 15 above values assume close access, good lighting and removal of surface coatings 5 10		15
The above values assume	close access, good ligh	nting and removal of surface	coatings

2. Find the fracture critical crack length l_f

a. Remember plastic collapse and fracture discussed as in steel

- 3. Calculate the fastest growing curve based on fracture mechanics principles with an upper bound defined as mean plus two standard deviations on the stress. This is for the crack to propagate from l_d to l_f under mean plus two standard deviation applied stress. Determine the duration T_f from the fastest growing curve.
 - a. EN 1999-1-3 Annex B provides the material properties to use and the relevant equations. Just show the curves to students. It is not expected from them to perform the calculations in this course.
 - b. Discuss the crack growth curves in EN 1999-1-3 Annex B.
- 4. The inspection intervals is then given by:

$$T_i = \frac{T_f}{2} \tag{5}$$

- 5. Calculate the actual crack propagation curve if information is available. This forms the curve for fracture control on the damage tolerant design.
- 6. Immediately take the structure out of service when the measured crack length exceeds l_f .

Figure 4: Inspection strategy for damage tolerant design (EN 1999-1-3, 2007:43)

5.15. Castings – Detail categories

This section summarises fatigue strength data for castings as follows:

- 1. For plain castings see Table 5.
- 2. Fatigue strength values for welded castings are not covered by EN 1999-1-3.
- 3. For Mechanically joined castings of Category A Bearing Type bolts see Table 6

Table 5: Numerical values of $\Delta \sigma$ [in MPa] for plain material (EN 1999-1-3, 2007:77)

Detai (N _C =	il category = 2×10^6)	$N = 10^5$	$N_D = 2 \times 10^6$	$N_L = 1 \times 10^8$
$\Delta \sigma_{C}$	$m_1 = m_2$	$\Delta\sigma$	$\Delta\sigma_D$	$\Delta\sigma_L$
71 ¹⁾	7	108.9	71	40.6
50	7	76.7	50	28.6
40	7	61.4	40	22.9
32	7	49.1	32	18.3
25	7	38.4	25	14.3
¹⁾ see	NOTE belo	W		

NOTE: The additional limitations concerning maximum pore diameter should be observed:

Detail category ($N_{C} = 2 \times 10^{6}$)	71	50	40	32	25
Maximum pore diameter	0.2	0.5	0.9	1.5	2.0 (normal)

Table 6: Numerical values of $\Delta \sigma$ [in MPa] for bolted joints (EN 1999-1-3, 2007:78)

Detail category ($N_C = 2 \times 10^6$) for plain material	Corresponding detail category for bolted joints $N_c = 2 \times 10^6$		$N = 10^5$	$N_D = 5 \times 10^6$	$N_L = 1 \times 10^8$
	$\Delta \sigma_{C}$	$m_1 = m_2$	$\Delta\sigma$	$\Delta\sigma_D$	$\Delta\sigma_L$
71 ¹⁾	45	4	95.2	35.8	16.9
50	40	4	84.6	31.8	15.0
40	25	4	52.9	19.9	9.4
32	20	4	42.3	15.9	7.5
25	16	4	33.8	12.7	6.0

5.16. Detail categories for aluminium

The following applies for the detail categories in EN 1999-1-3 Annex J (2007:79):

- 1. Detail categories are valid for ambient temperature, exposure conditions and do not require surface protection.
- 2. Apply with execution requirements EN 1090-3.
- 3. Applicable for stress ratio $R \ge 0.5$.

Note the alloy restrictions in the fatigue data, which is different that it was for steel in EN 1993-1-9.

5.16.1. For plain members

Detail type	Detail category $\Delta \sigma m_1^{(1)}$ Alloy restriction	Produ Construc Initiat	ct forms tional detail ion site	Stress orientation	Stress analysis	Exe	ecution re	quireme	ents
1.1	125-7 7020 only	Sheet, plate and simbar, mac	Sheet, plate and simple extruded rod and bar, machined parts				No corners contac	re-entra in profil ct with o parts	nt le, no ther
1.2	90-7	Surface	irregularity	tion direction	tress at initiati	ss direction, e	Mach surf R ₂₅ Visua	lined wit ace finis < 40 μn l inspec	n a sh n tion
1.3	80-7 7020 only	Sheet, plate, extrus	sions, tubes, forgings	Iling or extrus	pal nominal st	arallel to stre raisers	Hand perm paral d	grinding itted unk lel to stre irection	i not ess ess
1.4	71-7	Surface	irregularity	normal ²⁾ to ro	Princi	mers unless p stress	No se transve d Visua	core ma erse to s irection l inspec	rks tress tion
1.5	140-7 7020 only	Notche	$\Delta \sigma$	Parallel or	for stress on: see D.2	ee of sharp co	Holes r No se	drilled a eamed core ma	and
1.6	100-7	Surface	irregularity		Account concentrati	Surface fre	transve ori Visua	rse to s entation I inspec	tress i tion
Not	es:		Δσ 300						
	1. $m_1 = m_2$, amplitude $N_c = 2 \times 10$	<mark>constant</mark> fatigue limit at 0 ⁶	N/mm ² 200 150				¥====		
	2. If the stress normal to direction to	the extrusion the manufacturer	50						14 12 12 10 9 8
	concerning assurance extrusions bridge die	the quality in case of by port hole or	40 30 20 15						7
	3. R _{z5} see E EN-ISO 428	N-ISO 4287 and 38	10						
			5 L	105	106		107	108	109

Table 7: Detail categories for plain members - extraction from EN 1999-1-3 Table J.1 (2007:79)

10⁶

107

10⁸

10⁹

Ν

5.16.2. Members with welded attachments - transverse weld toe

Table 8: Detail categories for members with welded attachments - transverse weld toe extraction from EN 1999-1-3 Table J.3 (2007:81)

						St	ress	Execution	te
Detail type	Detail car $\Delta \sigma - m_1$	tegory 1)2)	Constru	ctional detail ation site	Dimen- sions (mm)	Stress parameter	Stress already allowed for	requirement	Quality level ³⁾
3.1	32-3	,4		$\Delta \sigma$	L ≤ 20				
3.2	25-3,4 <i>t</i> ≤ 23-3,4 4 < 20-3,4 10	4 $t \le 10$ $t \le 15$ At transverse weld toe on stressed member, away from edge (weld continued longitudinally at flange edge)							
3.3	28-3	,4	, k		L ≤ 20	site	ent		
3.4	23-3,4 <i>t</i> ≤ 20-3,4 4 < 18-3,4 10	4 <i>t</i> ≤ 10 < <i>t</i> ≤ 15	At transverse v member at cor longitudinal	weld toe on stressed rner (weld continued ly at flange edge)	L > 20	tress at initiation s	effect of attachme	Grind undercut smooth	
3.5	18-3,4		$\Delta \sigma$ Member surface	ce on edge	No radius	Nominal s	Stiffening		с
3.6	36-3,4		Δσ In ground weld	toe on edge	r ≥ 50			Grind radius parallel to stress direction	
Note	S:	-		Δσ 300					
	1. $m_2 = m_2$	₁ + 2		N/mm ² 200					
:	2. For fla bending 6.2.1(11	nt mem stre) and	bers under esses see increase by	150					
3. According to EN ISO 10042:2005			50 40 30				=====		
				20 15 10					
				5	10 ⁵	106	10	p ⁷ 10 ⁸	10

Ν

10⁹

5.16.3. Detail categories for members with longitudinal welds

					S ar	otress nalysis	Execution requirements				
tail type	Detail category	Constructional de Initiation site	detail ite	structional detail Initiation site			entrations owed for		Quality level ³⁾		nal
De	$\Delta \sigma - m_1^{(1)}$			type	Stress para Stress para Stress conce already allo		Welding characteristic s	internal	surface and geometric	additio	
5.1	63-4,3			letration weld caps d flush			Continuous automatic welding	в	с		
5.2	56-4,3	At weld discontinu	σ uity	Full pen butt Weld ground	on site			с	с		
5.3	45-4,3	At weld discontinue	uity	Full penetration butt weld	al stress at initiation		Any backing bars to be continuous	с	D		
5.4	45-4,3			Nomin Nomin		в	с	2)			
5.5	40-4,3	$\Delta \sigma$ At weld discontinu	uity	Continue we				с	D		
5.6	36-4,3	Δσ Weld toe or crat	er	Intermittent fillet weld g ≤ 25L				с	D		
Note	es:		$\Delta \sigma = 300$ N/mm ²								
	1. $m_2 = m_1$	+ 2	200 150								
	2. <u>Discontin</u> longitudir be longe plate thio	nuity in direction of nal weld should not er than 1/10 of the ckness or exhibit a	100		11111						
:	slope ste 3. Accordin 10042:20	eper than 1:4. g to EN ISO 005.	40 30 20			~		11/11			
			15								
			5				6 107				

Table 9: Detail categories for members with longitudinal welds - extraction from EN 1999-1-3Table J.5 (2007:83)

5.16.4. Butt-welded joints between members

					-	-				
Dotail	Detail category $\Delta \sigma - m_1^{(1)}$			Joint Part	sis	E	xecu	Quality 3)		nts
type		Constructional detail Initiation site	Type of		yler	D	ents	le	evel"	al
,ypc			weld		Stress ar	Weldin	requirem	internal	surface and geometric	additior
7.1.1	56-7		Full penetration, caps	Flats, solids				в	В	6)
7.1.2	45-7	Δσ Weld	ground flush both sides	Open shapes		und off		с	с	
7.2.1	50-4,3	A Y	Welded	Flats, solids	1	ot gro	itress	в	В	4) 6)
7.2.2	40-3,4		from both sides, full	Open		Ro	on of s	В	С	6)
7.2.3	36-3,4	Weld toe	penetration	shapes	E.		lirectic	С	С	
7.3.1	40-4,3		Welded one side only, full	Flats, solids	Vet sectio		flush in c	с	с	
7.3.2	32-3,4	Δσ Weld toe	penetration with permanent backing	Open shapes, hollow, tubular	Open hapes, iollow, ubular		nd ground	с	с	
7.4.1	45-4.3	$\langle \cdot \rangle$	Welded one Flats,			t off a	В	В	5) 6)	
7.4.2	40-4,3		side only, full	solids		lds, cu	С	С		
7.4.3	32-3,4	Δσ Weld toe	penetration without backing	Open shapes, hollow, tubular			used on en	с	с	6)
7.5	18-3,4	Δσ Weld	Partial penetration		Net throat		xtension plates i	D	D	
7.6	36-3,4	Δσ Weld toe	Full penetration		Net section ²⁾		ш	в	в	
lotes:	_			100						
1. 2.	$m_2 = m_1 + 2$ Stress concent	ration of stiffening effect of tra	ansverse	50 40	Y	M	11			50
	element already	allowed for.		30						56- 45- 50- 45- 40-
3. ⊿	According to EN	1 150 10042:2005. 150° for both sides of the weld		15		+				40- 36- 32-
4. 5.	Overfill andle >	150° 101 DOLT SILLES OF LITE WELD.		10				-		18-
6	Taper slope < 1	: 4 at width or thickness changes		5						

Table 10: Detail categories for butt-welded joints between members - extraction from EN 1999-1-3 Table J.7 (2007:85)

5.16.5. Fillet-welded joints between members

		-	Str	ess lysis	Execution requirements													
,pe	Detail	Constructional detail y 1) Initiation site		eter	ations d for	Ŧ	Q											
Detail ty	category 1) $\Delta \sigma - m_1$		Type of weld	Stress parame	tress concentra already allowed	Welding	internal	surface and geometric	additional									
9.1	28-3,4	Δσ Weld toe	Double fillet weld partial penetration; toe crack for <i>a/t</i> > 0,6	Net section	se element	t off and ground	С	С										
9.2	25-3,4	Δσ Weld	Double fillet weld partial penetration; root crack for a/t ≤ 0,6	rroat	hroat	hroat	effect of transverse	ffect of transverse	ffect of transverse	ffect of transverse	fect of transverse	ffect of transverse	ffect of transverse	effect of transvers	used on ends, cut h in direction of ∆	с	С	
9.3	12-3,4	Δσ Weld	One sided fillet weld ²⁾ , root crack for $a/t \le 0,6$	Net th	Stiffening e	Extension plates flus	с	С										
9.4	23-3,4	Δσ Weld toe	Fillet weld	Net section	Stress peak at weld ends		с	С										
9.5	18-3,4	Δσ Weld toe	Fillet weld				с	С										
9.6	14-3,4	Δσ Weld	Fillet weld	Net throat, see 5.4.2			С	С										
Note	es: 1. $m_2 = m_1$ 2. In case design t according 3. Accordin	+ 2 of tubular cross section o detail type 9.1 or 9.2 gly. g to EN ISO 10042:2005.			50 40 30 20 15 10													

Table 11: Detail categories for fillet-welded joints between members - extraction from EN 1999-1-3 Table J.9 (2007:87)

5.16.6. Crossing welds on built-up beams

Execution						ecution r	requirements				
	Detail category $\Delta \sigma - m_1^{(1)}$	Constructional detail		SIS.			Quality				
ype			etail		aly	Welding requirements		level ⁴⁾		8	
Detail t		Initiation site	8	Type of weld ^{2) 3)}	Type of ss weld ^{2) 3)}			internal	surface and geometric	addition	
11.1	40-3,4	Weld		Double sided butt weld, full penetration, caps ground flush both sides		direction of $\Delta\sigma$	Root ground off	в	в	5.4 or 5.5	
11.2	40-3,4	Weld		Single sided butt weld, full penetration, root and cap ground flush	section	section	off and ground flush in		в	В	see Table J.5, type no.
11.3	36-3,4	Weld toe		Double sided butt weld, full penetration	Net s	ates used on ends, cut	Overfill angle ≥150° root ground off	в	С	-to-flange fillet welds, s	
11.4	32-3,4	Weld toe		Single sided butt weld, full penetration		Extension pla		с	С	For wet	
Notes:			1								
1.	$m_2 = m_1 + 2$	2	50		1						
2.	2. Transverse web and flange butt joint before final assembly of beam with longitudinal welds.		40 30 20						=	40	
3.	Taper slope or thickness	e < 1:4 at width change.	10					1	-		
4.	According 10042:2005	to EN ISO	5							18	

Table 12: Detail categories for crossing welds on built-up beams - extraction from EN 1999-1-3Table J.11 (2007:89)

5.16.7. Attachments on built-up beams

Table 13: Detail categories for attachments on built-up beams - extraction from EN 1999-1-3Table J.13 (2007:91)

Detail				Stress analysis		Execution requirements		n hts		
ail type	Detail category	Constructional detail	Type of weld	ter	icen- eady for	Quality level ²⁾		al		
$\Delta \sigma - m_1^{(1)}$	$\Delta \sigma - m_1^{(1)}$ Initiation site	Type of weld	Stress	Stress cor trations alr allowed	internal	surface and geometric	addition			
13.1	23-3,4	Weld toe	Transverse attachment, thickness < 20 mm, welded on one or both sides		pare to Figure 5.2)					
13.2	18-3,4	Weld toe	Longitudinal attachment length ≥ 100 mm, welded on all sides	Net section	oint" of connection (com			J.5, type no. 5.4 or 5.5		
13.3	32-4,3	Weld toe	Cruciform or tee, full penetration		oncentration at "hard p	с	С	fillet welds, see Table .		
13.4	25-4,3	Weld	Cruciform or tee, double sided fillet welds; root crack for a/t ≤ 0,6	Net throat	attachment / stress co	f attachment / stress o	f attachment / stress o			For web-to-flange
13.5	20-4,3	Weld toe	Coverplate length ≥ 100 mm, welded on all sides	Net section	Stiffening effect of					
Note	es: 1. $m_2 = m_1$ 2. Accordin 10042:2	1 + 2 ng to EN ISO 1005	50 40 30 20 15 10 5							

5.16.8. Bolted joints

	Detail	Constructional detail	Stres	s analysis	
Detail type	$\Delta \sigma - m_1$ 1)	Initiation site	Stress parameter	Stress concentrations already allowed for	Execution requirements
15.1	56-4	Preloaded (friction type), high strength steel bolt	Nominal stress based on gross section properties	Surface texture, fastener hole geometry;	Lap joint with flat parallel surfaces Machining only by high speed milling cutter; holes drilled (with optional rea- ming) or punched (with compulsory reaming if thickness > 6 mm)
		In front of hole (sometimes at edge of hole)		unequal load distribution between rows of bolts;	For preloaded bolts the quality should be 8.8 ($f_y \ge 640 \text{ N/mm}^2$) or higher see EN 1999-1-1.
15.2	56-4	Non-preloaded (bearing type) steel bolt $\Delta \sigma$ At edge of hole	Nominal stress based on net section properties	eccentricity of load path in symmetrical double covered lap joints only	Lap joint with flat parallel surfaces Machining only by high speed milling cutter; holes drilled (with optional reaming) or punched (with compulsory reaming if thickness > 6 mm) For bolts see EN 1999-1-1.
Notes:					

Table 14: Detail categories for bolted	joints - extraction from EN 1999-1-3 Table J."	5 (2007:93)
--	--	-------------

- 1. $m_2 = m_1$
 - Verification of the resistance of steel bolts: See EN 1993-1-9.

6. REFERENCES

AMBRIZ, RR., MAYAGOITIA, V. 2011. Welding of Aluminium Alloys. *Recent Trends in Processing and Degradation of Aluminium Alloys, Prof. Zaki Ahmad (Ed.), ISBN :978-953-307-734-5.* Available from: <u>http://www.intechopen.com/books/recent-trends-in-processing-and-degradation-of-aluminium-alloys/welding-of-aluminium-alloys</u>

Downloadable from: http://cdn.intechopen.com/pdfs/24034/InTech-Welding_of_aluminum_alloys.pdf

CHEN, D.L. & CHATURVEDI, M.C. Effects of Welding and Weld Heat-Affected Zone Simulation on the Microstructure and Mechanical Behavior of a 2195 Aluminium-Lithium Alloy. *Metallurgical and Material Transactions A.* Available at: http://link.springer.com/article/10.1007%2Fs11661-001-1025-6#page-2

EN 1999-1-3. 2007. Design of aluminium structures – Part 1-3: Structures susceptible to fatigue. *European Committee for Standardization, Ref. No. EN 1999-1-3:2007/A1:2011:E.*

HATAMLEH, O., LYONS, J. & FORMAN, R. Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminium. *Personal research paper by omar.hatamleh-1@nasa.gov.* No Date available. Available at: http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060020748 2006056173.pdf

HÖGLUND, T. 1999. TALAT Lecture 2301. Design of Members. *EAA – European Aluminium Association*, Stockholm. Available at: http://www.inti.gob.ar/cirsoc/pdf/estructuras_aluminio/Aluminium_Structures.pdf

KECSMAR, J. 2012. Fabrication and Fatigue Failure in Aluminium. *Personal BoatBuilder*. Available at: <u>http://www.adhocmarinedesigns.co.uk/wp-content/uploads/2012/07/ProBoat-June-July-2012-Aluminum-Welds.pdf</u>

KELSELEY, R.A. 1971. Effect of Heat Input on Welds in Aluminium Alloy 7039. *Welding research supplement.* Available at: <u>http://www.aws.org/wj/supplement/WJ_1971_12_s507.pdf</u>

MA, Y.E., STARON, P., FISCHER, T. & IRVING, P.E. 2011. Size Effects on Residual Stress and Fatigue Crack Growth in Friction Stir Welded 2195-T8 aluminium. Part I: Experiments. International Journal Fatigue, Volume Issue November 2011. 1417-1425. of 33, 11, pp. Available at: https://dspace.lib.cranfield.ac.uk/bitstream/1826/7641/1/Size_effects_on_residual_stress_P1-2011.pdf Prescribe for reading by students.

MISSORI, S. & SILI, A. 2000. Mechanical behaviour of 6082-T2 aluminium alloy welds. *Metallurgical Science* and Technology. Vol. 18(1)(2000). Available at: http://www.gruppofrattura.it/pdf/ext/MS%26T/Vol.18%20No1/Mechanical%20behaviour%20of%20608 2-T6%20aluminium%20alloy%20welds.pdf Students to read

MIYAZAKI, K., NISHIO, M., KATOH, M., MUKALE, S. & KERR, W. Quantitative Investigation of Heat-Affected Zone cracking in Aluminium Alloy A6061. *Welding research supplement.* 1990. Available at: <u>http://www.aws.org/wj/supplement/WJ_1990_09_s362.pdf</u>

POLMEAR, I.J. & WILKINSON, D.R. 1983. Effects of GTA Dressing on the Fatigue Properties of
Aluminium Alloy Welded, Butt Joined and Fillet Welded Plates. Australian Welding Research
Association, Welding Research Supplement.Association,
Available
Students to readWelding Research Supplement/WJ_1983_03_s78.pdf

The weld http://eng.sut.ac.th/metal/images/stories/pdf/04_Weld%20microstructure01.pdf

microstructure:

The effects of weld geometry on the fatigue behavior of welded connections. 1970. Baie ou artikel. Available at: https://www.ideals.illinois.edu/bitstream/handle/2142/14783/SRS-366.pdf