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Shear force distribution

Bending moment distribution
o Bernoulli-Euler beam modelling

Normal stress distribution
Bending stress distribution
Torque shear stress distribution
Shear force stress distribution
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VESTMECH

Ra

Shear force diagram

a F b TRB

X

L=a+b

From Newton’s law for forces:
Ry—F+Rg=0
From Newton’s law for moments around A:
RgL —Fa=0
Fa
Rp =—

Substitute into the first equation above:

Shear force diagram:
* Ry for x€[0;a]
* —Rpforxe€[a;L]

6/5/2020
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T .xL R

Add distributed load

Shear force distribution over x € [0; a]:
V(x) =R, —wx

X

L=a+b

From Newton’s law for forces:
Ry—F+Rg—wa=0
From Newton’s law for moments around A:
a
RBL—Fa—wa~E=0

2

wa
Fa+T

L
Substitute into the first equation above:
Ry=F—Rg+wa
2
Fa + wa

=F —2+Wa

=F(1—%)+w<a72+a)

B =

6/5/2020

=Ry —wx
é ; Shear force distribution over x € [a, L]:

V(x)=R,—wa—F

Shear force diagram: simply supported

OszA‘WX

Shear force [N]

-0.2

V(x) =Ry, —wa—F

-0.4

0 01 02 03 04 05 06 07 08 09 1
x[m]
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Bending moment diagram

INVESTMECH

z
A A
Deflections in 3D are: ui + vj + wk M,
Euler-Bernoulli beam theory: \ /%
d*w I | \\I o
E(x)I(x) I M (x) /f -
N +V,
For y-axis pointing towards reader e +Wa “

Sign of M depends on direction of +MA‘/;0,;-

z-axis

If z-axis points upwards, the equation
becomes (y-axis pointing away from

reader):
2

d
E)I(x) d—x”z’ = M,(x)

6/5/2020

%—X+ /‘ +Mp

7+VBz

[NVESTMECH
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/ﬁ :

21 L
Fy
From statics:

M, = FL
F,=F

The bending moment at position x:
My, (x) = —Fpx + My
=—-Fx+FL

F— > X

Apply to cantilever beam

Integrate once to calculate beam slope:
dw F 1
—=—(—cx?+Lx|+4

dx EI\ 2
The rotation is zero at x = 0 (built in):
0. = dw[ — 0]
AT dx =

O(x=1)= iFE—LIZ tip will lift up, + slope

Integrate to calculate deflection:
F 1 1
w= —<——x3 +—Lx2> +B

Euler-Bernoulli for this coordinate\gystem: EI\ 6 2
d*w The deflection is zero at x = 0. Therefore,
E(X)I(X)W =M, (x) B=0
dw M Deflection at the end is:
dx® ~ EQI(x) we Ll FEP
= E (=x+1) Clockwise moment at x is + for El

6/5/2020

chosen coordinate system
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Simply supported beam

| B

INVESTMECH
sz L F
. a )
T x
A[C———X
Ry Rp

Apply the static equations
*  Sum of forces:

ZFz:0=RA+RB—F

Ri+Rz=F

Sum of moments around A:

Fa— LRy =
_ a
BT
Therefore:
R = F Fa
AT L

6/5/2020

Bending moment diagram

045 -

Bending moment equations ,
From A to F x€[0; al:

0.35

M, = Ryx
Fa _ 03
:(F_T>x 2}025
From F to B x €[a; L]: = 0,
My, = Ryx — F(x — L) sl

=F(1—%)X—F(x—a)

Fa
=-——x+Fa 005

ForF=1N;a=12m&L=2m,the
bending moment diagram is:
0.5 T T v

=Fa(1—%) %

bending moment by integration of

I1 Shear force diagram and shear force to

INVESTMECH shear force
Fa
L
»
\\
z \ L F
a . \\\ N
A >X B
\\
N \
\
\\\
Ry \\ Rip
/\’V\\/' Fa
FromAto F: From F to B: ' -

* Fa
My = f (F —T) dx
x=0

(-

6/5/2020

In most cases, this step
is not followed and the
shear force and bending
moment diagram is
constructed by addition
and subtraction as
demonstrated up to this
slide
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Sliding beam

dw_l lR 2ic
dx EI\27Y Th

INVESTMECH
Az L F
L a > L
| Rg=—F
ACC——X ] Ly
Ry+Rz=F
Ry=F(1 L
4= L
Ry Rp
For interval A-B: For interval B-C:
M, = Ryx M, = Ryx + Rg(x — Ly)
dzw_lR dzw_lR R L
dx? _ EI A axz ~ g Fax T Rex = L0)

dw 1 e lp? RoLxtC
ax ~ B1\g R g Rex” — Relax 4 G5

1/1 3 1/1 5. 1 s 1 5
W=E ERAX +Cix + G, W=ﬁ ERAX +gRBx _ERBle + C3x + Cy
But, w(0) = 0 and w(L;) = 0 But, & =2 atyx=randw(l) =0
C, = dx AB daxpc
1 2
G =—gRali
6/5/2020 9
9
INVESTMECH
intg: & _aw — -
AT Point B: i deCatx =Liandw(L,) =0
dw(Ly) 1 1 1 1
b ERAXZ ——RyL% = ERAXZ + ERBXZ — RgLyx + C3
2 1 2 2
Cs = —ZRald =5 Rals® + Rgl}
o 1 1
=13 _ERA +=Rp
and
1/1 1 1/1 1 1
w(Ly) = E(ERAX3 - —RAL§x> = E(ERAX3 + ERBx3 - ERBlez +C3x + C4)
3 3 1 3
_ERALl = ERBLl - ERBLl +C3L, +Cy
1,51 3,1, 03
Cy = _ERALl _ERBLl + ERBLl + C3L,
6/5/2020 10
10
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l1 Bending moment distribution on a
INVESTMECH beam
T z
RA a
v"v:v:'%:wv:v:'v:'v:v:'v:v:v}
—— '
X
2

At position x, formulate the bending moments by just looking towards the origin of the
coordinate system

For x € [0; a]:
My, = Mg, + M,
:R,qx—wx-E
For x € [a; L]:
My, = Mg, + M,,
=RAx—wa-(x—§)
6/5/2020 "
11
l1 Where to put splices?
[NVESTMECH
Demonstrate in Prokon
* There is an example in the class notes
6/5/2020 12
12
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o>

6/5/2020

Bending stress distribution

General equation:

o = Mdi_ MyXi

b,i Ixx Iyy

Where:
x;: x-coordinate of the point where stress is required
y;: y-coordinate of the point where stress is required
I..: Second moment of area around the x-axis [m?]
I,,,: Second moment of area around the y-axis [m*]
Applied to Point A:
MXYA _ MyxA

Opa =

Lx Iyy
w H
Ya=750Va=75

Applied to Point B:

13

INVESTMECH

o>

Investmech algorithm: stressbendingmoment.m

6/5/2020

Bending stress distribution

Say H = 100; W = 50 mm, then:
1
L = EWH3 =4.1667 x 107 m*
1 -
lyy =5 HW? = 1.25x 107 m*
Bending stresses at A and B for M, = 1000 Nm & M,, = 100 Nm
Opa = 11.8 MPa; 03 = —11.8 MPa
The bending moment distribution over the cross section

Stress distribution

'z:122 X:0.025

Stress [MPa]

=5

-20
0.05

y[m] -0.05  -0.04 x[m]

14
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l‘ Bending stress distribution at x=0

INVESTMECH
5. Stress distribution General equatlon
_ My Myx;
10 b= T
Ixx Iyy

reduces to:

0 WWW Oy = %

s For a positive bending moment M,,:
* Tensile stress for positive y
* Compressive stress for negative y

At x = 0, the bending stress distribution

Stress [MPa]

-10

-15
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.3 0.04 0.05
y[m]

Investmech algorithm: stressbendingunsymmetric.m

6/5/2020 15

15

I‘ Class problem — do in class

INVESTMECH
y You have square cross section
. with W = 50mm and H =
1 100 mm
u, What are the stresses at Points A
4 *f—x  and B on the figure for moments
w M, = 1000 Nm and M,, =
S — 100 Nm applied simultaneously?

16
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Bending stress: Circular tube

INVESTMECH
General equation:
o = M,y; _ Myxi
b,i Ixx Iyy
y Where:
T 4
Lx = a(Ds - Di )
Ly = Ly
Iy = L + 1y
=2l
Stress distribution for R=100mm,M_=1Nm&M_=0
X " Y
£
Investmech algorithm: stresscircular.m
6/5/2020 17
17
Bending stress: Solid circular bar
INVESTMECH
Stress distribution for R =100 mm, Mx =1Nm& My =0
X:-0.009602
y Y: 0.09954
2000 Z: 1267 .
S 1000
o
g
x3 °
£
©
S -1000
o
-2000
0.1
y [m] -0.1 01 x [m]
6/5/2020 18
18
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I‘ Bending stress in unsymmetrical
sections
INVESTMECH
w The equation for unsymmetrical bending under M,,:
- — o F My, + Mzz1yz L M,l,, + Myzlyz
A Izzlyy - Iyz Izzlyy - I;VZ
Where:
t 1, h\?
Iyyzﬁtwh +Wtf E X 2
Y 3 1 3
h IZZ=EhtW+2X§ffW
h w —-h —-w
Iyz = th EE +th 77
1
= Etfwzh
(I
e See stress distribution on next page
z
6/5/2020 19
19
INVESTMECH Stress distribution

100

50

I

AN
SN

-100
0.05

Stress [MPa]
o

0.05

z[m] -0.05  -0.05 y [m]
6/5/2020 20

20
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INVESTMECH

* |s uniform

6/5/2020

Normal stress distribution

21

21

INVESTMECH

x- and y-axes are:

Qx = jydA
Qy = deA
From which the shear stress is:
_ VyQx
Y LW
VQy
T H
T=T,+ Ty

Average shear stress:

6/5/2020

The first moment of area around the

Shear stress distribution-solid
rectangular bar

. . H
With maximum value at a = 7

1 H?
B Qx,max=§WT
2
14 VyWéI
Tave:Z Tmax = 1 -
‘____————-_—\\\\\‘\\\\\\\“‘\-~\§________,,_ s W2H

3%

T2 wH

=1.5><7y

22

22

2020/06/05
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I‘ Shear stress: Circular section

[NVESTMECH
w = (R2 — y2)0-5 The first moment of area around the x-axis (the minus
sign is because the integral from R to y is in the opposite
/‘\ direction as shown in the figure):
v
Lavxnrranandy Q()zf_dA
““‘Zﬁf*‘T“““" * ﬁf R Y
y = f -y - 2wdy
R
y
x =2 [ =y -y dy
R

= 2[Ry

2
= Z(R? — y2)15
3R =»%)
The shear stress is maximum when y = 0:

vQ
Average shear stress: = L (2R)
4 T,
Tave = Z L = ZR
- V-2
mR? Tmax = 77
ZR“ - 2R
Consult http://integral-table.com/ for integrals 4( 14 ) 4
=—(—)==1
6/5/2020 3\nR%) 3% 23
23
INVESTMECH
For radius R = 100 mm, the shear stress distribution is the following function times shear force V:
Factor

St 18

® g

sl 12

;

< <

3° 13

o <

ST g

o bl

B 18

2| |5
6/5/2020 24

24
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I1 Shear stress distribution in boxed

INVESTMECH
y
SRR TV
da
y
h X

tw = tw
L - bad
) w

section

Area:
A=WH—wh
Second moment of area:

1
Ly = o (WH? — wh?)
First moment of area:
Qx = fydA

Top flange Webs
H-t

tH f(H
=f (——a) Wda+f (——a) 2ty da
o \2 t 2

!

Bottom flange

HoH
+ f (— — a) Wda
H-tf 2
The equation for the shear stress:
(= V,Qx
" Lh

Where b is the thickness, ranging from W to 2ty,
depending on a

6/5/2020 25
25
Shear stress distribution for V, = 1 N for
. . H=0.2;,W=0.1;t,=0.01; t=0.01
2 Shear stress \/y =1N [Pa]
- <b,o 8 B B 3% 8 B
QWeld A b, e
——ST
o0 [=}
ke St
(]
= =
7 i
14 g [Tave = 178.6 Pa ;
« Lol tm‘?x =3155Pa+— %
= max __ E)
'ti_’ ; E =177 "E
Why is Weld A better than B tw el z
PR
" [N)
< >
6/5/2020 Investmech algorithm used: stressshearboxed.m 26

26

2020/06/05

13



I1 Shear stress in unsymmetric sections
INVESTMECH
The shear stress for unsymmetric sections is:
_ IzzQy - IyzQz IzzQz - IyzQy
- b(lzzlyy - 13%2) " b(lzzlyy - 13%2) Y
Qy = fsz
1
Q= fydA
Yool
|
6/5/2020 27

27

INVESTMECH
Shear stress due to torque:
. Tr
T=71
y Izz
Stress distribution for R=100 mm & T =1 Nm
800
X
600
g
‘@ 400
¢
7]
200
0.1 .
01
0.05
Investmech algorithm: stresscircular.m
6/5/2020 28

28

2020/06/05

14



Circular tube

INVESTMECH
Stress distribution forRi=70,R=100mm & T=1 Nm
X: 0.09918
y Y:-0.01279
900 Z:837.8
| |
8005~
w
o
‘@ 700
8
x @ 600
e [ ]
509(1] T *  X:-0.06871
Y:0.01338
0.05 : 0.1
. Z:586.4 0.05
0
-0.05 -0.05
y[m] 0.1 -0 x [m]
Investmech algorithm: stresscircular.m
6/5/2020 29
29
INVESTMECH
Problem statement
The attachment is subjected to the force P as shown.
L P Compile equations from which the weld throat area, a, can
be calculated.
J
Solution
The second moments of area for the weld group is:
2
d R d
X L, = 2ab (—)
2
1
= Eabd2
b 1 .
Iyy =2 Eab
=—ab®
Lz = Lx + 1y
1 1
—alZpd2 +2p3
a <2 bd* + G b )
The area of the weld group is:
A = 2ab
6/5/2020 30
30

2020/06/05
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INVESTMECH
. Shear stress due to shear force Shear stress due to shear force and
o Assume uniform distribution torque to be considered
P P
BT T 26
. Shear stress due to torque L P
_ PLx
5T, y
PLy A
Txr = 1_
zz
. From direction of stresses, critical point is Point A d X
b d
Xp = Ei Ya = 2
PLb P
T4 ———
" 2a(Sbar+1pe) 200 b
PLd
Tyt =——7————7
" 2a (3bd2 +11?)
o Calculate residual stress on the surface and compare with factored resistance _ .
(x;¥) = r(cos8; sin
T= [th, +12, <067, J —
-
r/i
6/5/2020 9/ 31
B
31
INVESTMECH
»  Substitute further:
PLb P
T = — —
y,A 1 1 2
2a(5bd? +£b3) 2P
2 6
P Lb 1
a 1 1 2b
2(5bd? +2b%)
2 6
PLd
fea =771 1
2a(—bd24——b3) o
2 6
P Ld Y
= — 1 1 LLEl]] IIIIII):A v
“|2(3ba? +¢p?) ,
2 6 d X
SEREEEEREENEENENER
<«
b
6/5/2020 32
32
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I1 Using the idea

INVESTMECH

. Say, d = 100 mm,b = 50 mm, L = 400 mm,P = 15000 N

*  Weld metal is E70XX, with ultimate tensile strength 490 MPa
o Factored resistance: tz = 0.67% - 490 = 220 MPa
o Calculate stress and find throat size. From graph itis a = 6 mm

o e=85mm

450

Shear stress [MPa]
@ w N
g & IS
3 3 8

N
a
3

X:0.00598
Y:219.5

T~

3.5 4 4.5 5 55 6 6.5 7 75 8
Throat size [m] %107

6/5/2020 33

N
IS}
3

@
3

w

33

I1 Using the equation

INVESTMECH

Pl Lb 1
Tya=—|——F———<—5%
| o)

1
= —-.7.0385 x 10°
a -

p Ld
A=\l 1~
2|2 (%bdz + %b3)]

1
=7 1.1077 x 108

1
©=—/(7.0385 x 10%)2 + (1.1077 x 10%)2

1.3214
=2 MPa < 220

a=0.006m
e >84mm

6/5/2020 34

34
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Test with forces

INVESTMECH
. The factored shear resistance of 8 mm weld is: L
8 P
T'p = 0.67% - — - 490 = 1.24 kN /mm N 7
V2 y
. The weld lengths are 50 mm, giving:
Vg = 62.2 kN per weld Vi sy
. The torque that can be resisted is: d e X
d
T = ZEVR =2-0.05xV,
— 6.2 kNm oo U,
. The applied torque is: b
T=PL=04x%x15=6kNm
. This is less than the resistance
. The shear force resistance is 112.4 kN, more than the shear force or 15 kN
. This is not ideal, because at Point A the weld is subject to the highest shear stress due to
torque and shear force combined
o However, above approximation using forces give quick check
6/5/2020 35
35
INVESTMECH
by
[ ] LY
L 4
y F
A x
—> 57
H X . —>>
M, = torque
a4 ‘ 2=
I
B
Problem statement
An I-beam with height, H, width B, flange thickness, t; and web thickness, t,, is joined at the end by
the all around weld of size e. A force, F is applied at the other end.
Give the equations from which the following can be calculated in the weld group:
1. Bending stress
2. Normal stress
3. Shear stress
4. Combined stress
Assume for all calculation that the weld throat is positioned at the outside lines of the cross-section.
This is a conservative assumption and will reduce calculations substantially.
6/5/2020 36
36
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~ The weld throat area

INESMECH —_—— ~
= Ve — = \\\ !
¢ NN |

\\ ‘ Area: J N\ | |

/ A = 2a,(H = 2t;) + 2a,, (B — t,,) + 2a,,B + 4a, t;
/ Second moments of area:
. g 1
- L = 5. (2(H = 2t7)° + 417)
H —x H—tp?
+ (—2 ) 4ay,te

2

+2a,,(B—ty) (g - tf)

g 2

<5 " +2a,,B (E)
1 5 5 tw\?
Ly = 75 aw(4B* = 263) + 2a,, (H - 2t7) (7)
B 2
+4a,ty (E)

Iz = L + 1y
Using these equations, the normal and shear stress can be
calculated at any point in the weld group
For the torque, calculate x- and y-components to add or subtract as

needed
6/5/2020 37
37
INVESTMECH
General equations: (x;¥) = r(cos 6;sin 6)
g = Mxyl _ Myxl Q y
¢ Ly Iy A
Vi Tx
Ty = ky T
A I,
Vo Ty
Tx = Kx—F =7
A I,
Yy
a = atan |—|,x *0
X
Ty = f(r,% +1t2) + 02
Where:
o F,: Normal force [N]
o Vs, Vy: Shear force in the x- and y-directions [N]
o T = M,: Moment around the z-axis = torque [Nm]
o x;: x-coordinate of the point where stress is required
o y;: y-coordinate of the point where stress is required
o 1. Second moment of area around the x-axis [m*]
o 1,,: Second moment of area around the y-axis [m*]
o 1,,: Second moment of area around the z-axis [m*]
6/5/2020 38
38
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INVESTMECH

* Do an example with numbers in class
o Not with MSV 780

6/5/2020 39

39

Welded splice

INVESTMECH

[ - L trs
s w”

o~
g
o

|
=
&

B
Problem statement:
An I-beam with height, H, width B, flange thickness, t; and web thickness, t,, is joined by the welded
splice as shown in the figure above. The dimension of the strengthening on the flange is Ly, Wy and tyg
respectively. The double plates on the web each has dimensions: is L,,;, W,,s and t,,s.
Type equation here. The gap is assumed to be g. Assume the weld size on the flange and web to be
e; and e,, respectively.
Calculate the weld size required on the flange and web, assume them of same size, to resist the shear
force and bending moment over the cross section.

6/5/2020 40

40
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I‘ The inserted metals in the gap

INVESTMECH
The second moment of area around the x-axis:
¢ 1 3 ) 1 5
fs Lix =E(tw5st)x2+2[Y[(M/f5tf5)+ﬁ(wf5tf5)]
_H by
" Y AR RETY
2 The area:
»X A= Z[Vsttfs + sttws]
Hys The bending stress distribution:
_Mey  Myx
tws tws Op = Ly Ly
7N — The bending force in the top and bottom section for M, :
< > M,y
Wrs dFop ==+ Wys - dy
IXX
M, FHtss
Ftop = I_.L y Vstdy
pod ?
My Wes|(H + 2t 2 (H)2
T Ly 2 2 2
My Ws 2
=8 [(H2+4Htss + 4tF) — H?)
M, W,
=L [Hys + ¢ ]
6/5/2020 ) L lax 41
This force must be resisted by the weld on the flanges
41
o) . .
o bending moment resisted by the
INVESTMECH g p
y
A If assumed that the forces on the flanges act at the centroid of the top and bottom
— plates, yr, the percentage of the bending moment carried by the top and bottom
plates is:
H t
Yr yp==+ %
- The moment by the top and bottom flange plates:
M= Ftop)’f + Fbor)’f
=2- Ftup}’f
The force in the top section (same as bottom) from previous slide:
_ My WfS 2
—/ M—nyg'?[‘mffs*"“fs]
M, W,
= yf[—"~f[4Htfs +4¢% ]
XX
Ratio in moment by top and bottom flanges (M) vs. total moment (M,):
My W P
M_x = E T[4Htf5 +4tfs]
Y,
=L Wy[Hiy + ]
xx
6/5/2020 42
42
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1 254 x 254 x 73 parallel flange H-section

INVESTMECH
Designation h b t, t, [ m A [} Z, r,
mmxmmxkg/m mm mm mm mm mm kg/m | 10° mm?2 | 108 mm* | 103mm?3 mm
1254x254x73 254.2| 254 8.6| 14.2) 12.7] 731 9.29| 114| 896 111
\ z r J [ Z Z., hit, h,
108 mm* | 103mm? mm 10°mm# | 10° mmé | 103mm? | 103mm3 mm
38.8 306 64.6 578 559 990 463 17.9 200
Source: https://www.macsteel.co. i isc_structural_steel_section_properties.xls

From the tables above, it is clear the H-beam has the following dimensions:

H = 254.2mm
B = 254.2mm
tr = 14.2mm

ty, = 8.6 mm
Assume the splice is made with the following dimensions:

Wrs = 200 mm
trs = 12mm
H,,s =120 mm

tws = 10 mm

Calculate the length of plate required on the flanges to resist a bending moment M,, = 179.2 kNm. That is,

calculate the weld length required to resist the force in the outer flanges for a weld size of 5 mm.

6/5/2020 43
43
INVESTMECH
Cross-section parameters
H 0.2542 m B 0.2542 m [ 1E-04 m*
t 0.0142 m ty 0.0086 m A 0.009 m?
Flange plate The plates on the flanges
Wis 02m trs 0.012 m A 0.002 m? resist 97 % of the bending
Web plate moment
Wos 0.12m tws 0.01 m Aus 0.001 m?
Cross-section parameters for the plates
vt 0.1331 m L 8.79725E-05 m*
g 0.005 m
Bending moment: My 1.79E+05 Nm
Force in top plate: F, 738 698 N
739 kN
% Moment by flange plates: 97%
Welding on flanges
Xy 4.90E+08 Pa fuweld 1.73E+03 N/mm ) )
e 0.005 m Lo 4.26E+02 mm To be continued in 2018
ags 0.00354 m Ls/2 213 mm
6/5/2020 Lts 426 mm Gap added 44
44

2020/06/05
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I1 Shear flow and shear stress in

INVESTHERH membraned sections

* Not in your scope

6/5/2020 45

45

I1 References

INVESTMECH

* Cross section properties

https://www.macsteel.co.za/files/saisc structural s
teel section properties.xls

6/5/2020 46
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