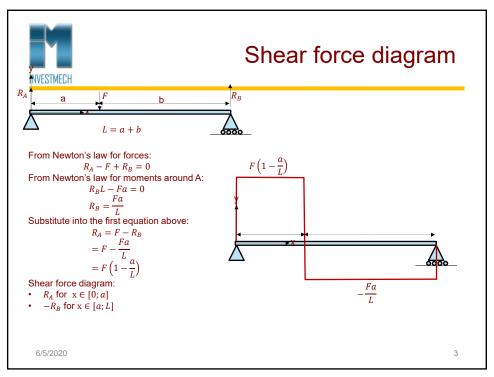


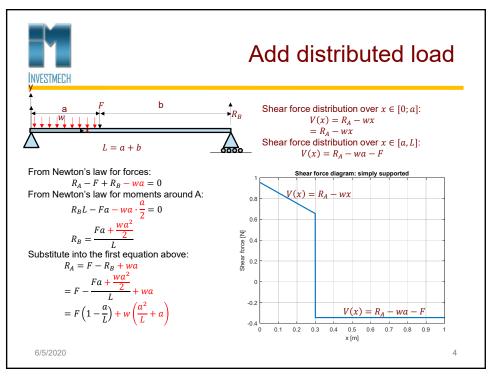
Investmech: Force, moment, torque and stress distributions

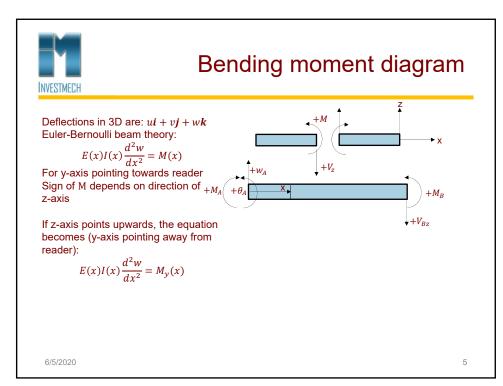
Dr. Michiel Heyns Pr.Eng.

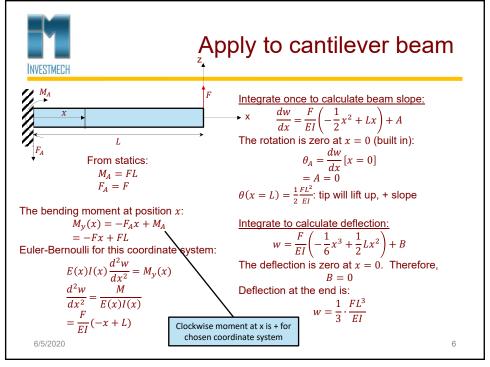
T: +27 12 664-7604 C: +27 82 445-0510 mheyns@investmech.com

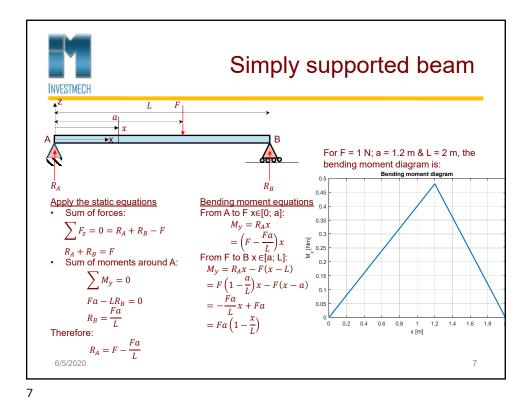
1

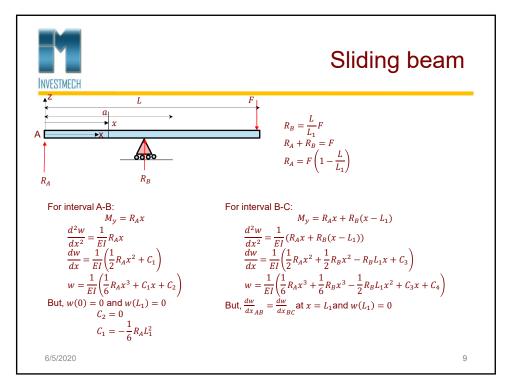



Topics


- · Shear force distribution
- Bending moment distribution
 - o Bernoulli-Euler beam modelling
- Normal stress distribution
- Bending stress distribution
- Torque shear stress distribution
- · Shear force stress distribution

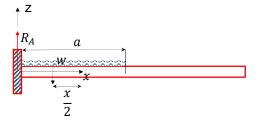

6/5/2020


2



Shear force diagram and shear force to bending moment by integration of shear force $F - \frac{Fa}{L}$ From A to F: $M_y = \int_{x=0}^{x} \left(F - \frac{Fa}{L}\right) dx$ $= \left(F - \frac{Fa}{L}\right) x$ $= Fa\left(1 - \frac{x}{L}\right)$ From F to B: $M_y = \int_{x=a}^{x} \left(-\frac{Fa}{L}\right) dx + \left(F - \frac{Fa}{L}\right) a$ $= Fa\left(1 - \frac{x}{L}\right)$ In most cases, this step is not followed and the shear force and bending moment diagram is constructed by addition and subtraction as demonstrated up to this slide

THIS MUST BE COMPLETED


AT Point B: $\frac{dw}{dx_{AB}} = \frac{dw}{dx_{BC}} \text{ at } x = L_1 \text{ and } w(L_1) = 0$ $\frac{dw(L_1)}{dx} = \frac{1}{2} R_A x^2 - \frac{1}{6} R_A L_1^2 = \frac{1}{2} R_A x^2 + \frac{1}{2} R_B x^2 - R_B L_1 x + C_3$ $C_3 = -\frac{1}{6} R_A L_1^2 - \frac{1}{2} R_B L_1^2 + R_B L_1^2$ $= L_1^2 \left(-\frac{1}{6} R_A + \frac{1}{2} R_B \right)$

$$\begin{split} w(L_1) &= \frac{1}{EI} \left(\frac{1}{6} R_A x^3 - \frac{1}{6} R_A L_1^2 x \right) = \frac{1}{EI} \left(\frac{1}{6} R_A x^3 + \frac{1}{6} R_B x^3 - \frac{1}{2} R_B L_1 x^2 + C_3 x + C_4 \right) \\ &- \frac{1}{6} R_A L_1^3 = \frac{1}{6} R_B L_1^3 - \frac{1}{2} R_B L_1^3 + C_3 L_1 + C_4 \\ &C_4 &= -\frac{1}{6} R_A L_1^3 - \frac{1}{6} R_B L_1^3 + \frac{1}{2} R_B L_1^3 + C_3 L_1 \end{split}$$

6/5/2020 10

Bending moment distribution on a beam

At position \boldsymbol{x} , formulate the bending moments by just looking towards the origin of the coordinate system

For $x \in [0; a]$:

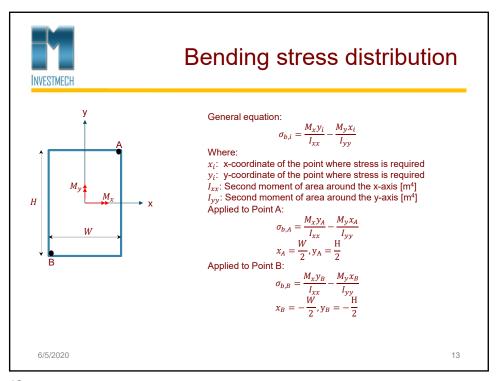
$$M_y = M_{R_A} + M_w$$
$$= R_A x - wx \cdot \frac{x}{2}$$

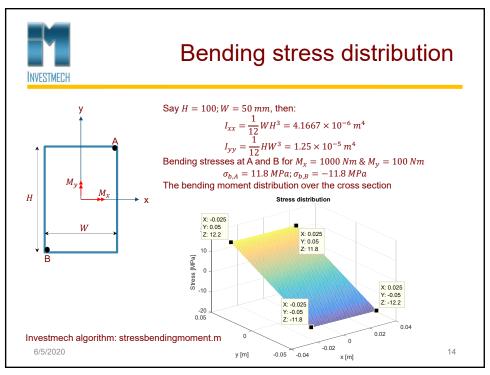
For $x \in [a; L]$:

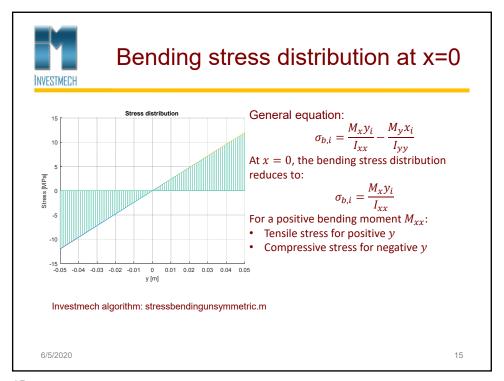
$$\begin{split} M_y &= M_{R_A} + M_w \\ &= R_A x - w a \cdot \left(x - \frac{a}{2} \right) \end{split}$$

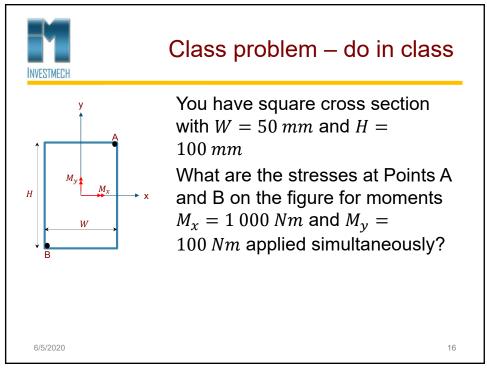
6/5/2020

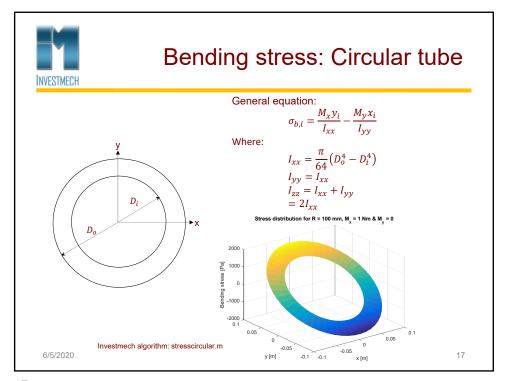
11

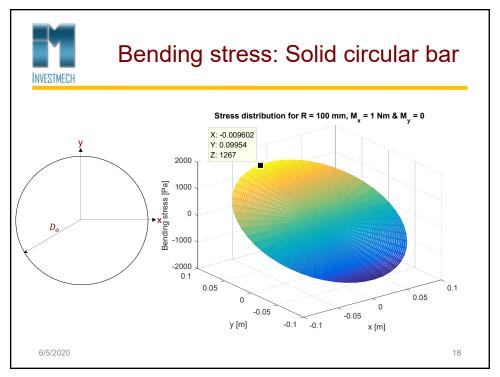

11

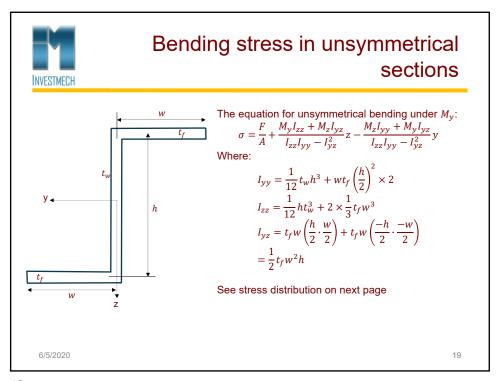


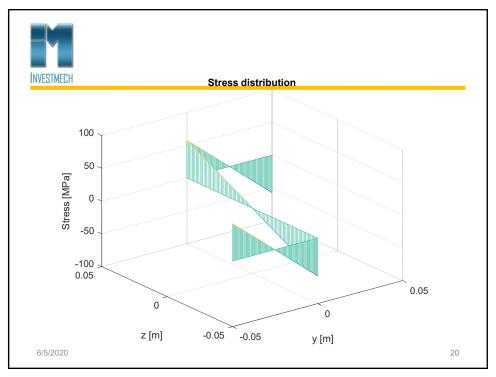

Where to put splices?


- Demonstrate in Prokon
- There is an example in the class notes

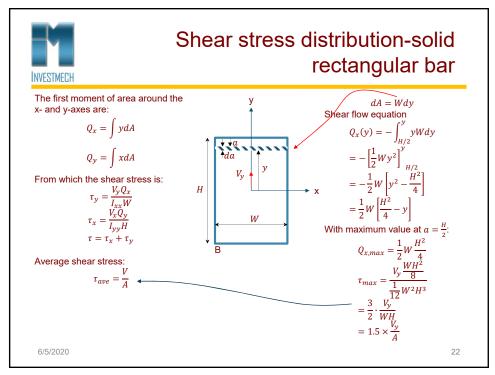

6/5/2020

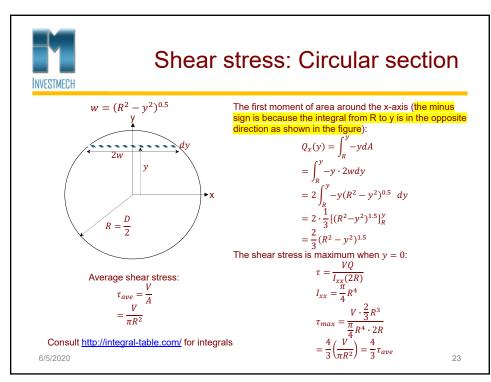


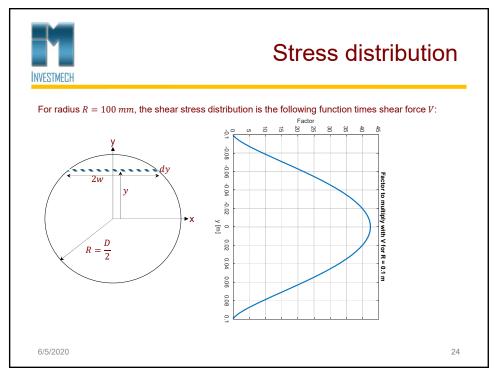


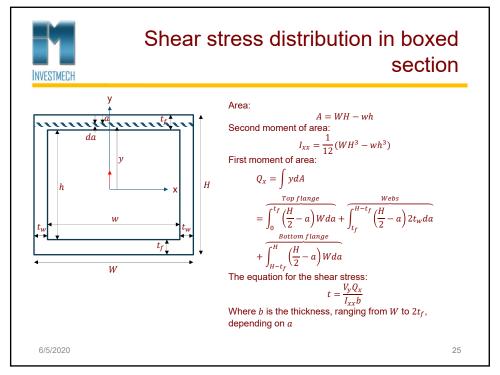


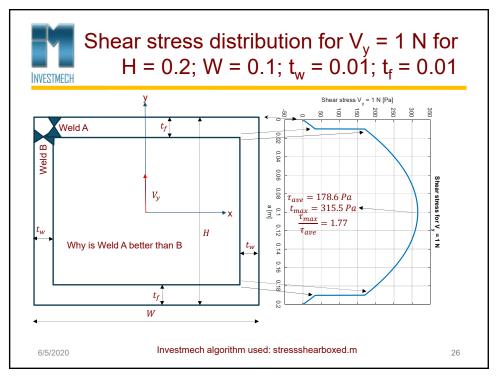
Normal stress distribution

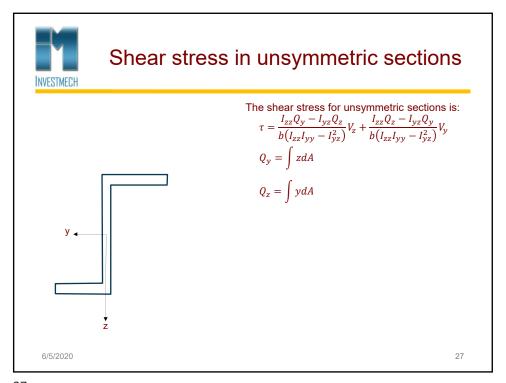

· Is uniform

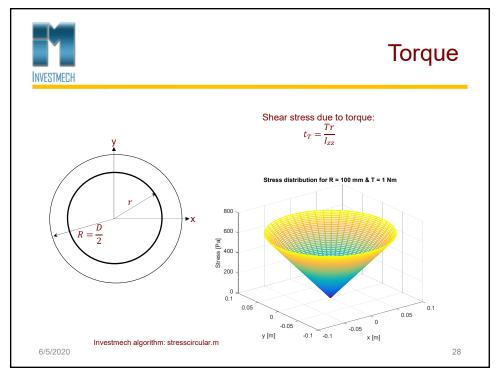

$$\sigma_n = \frac{F}{A}$$

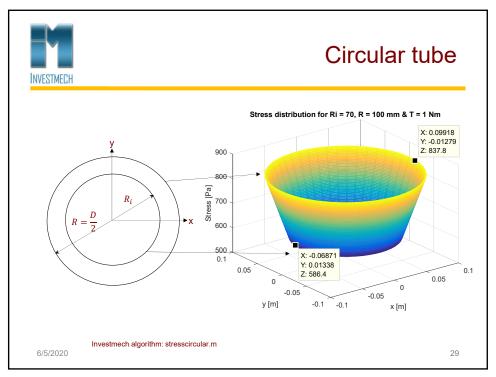

6/5/2020

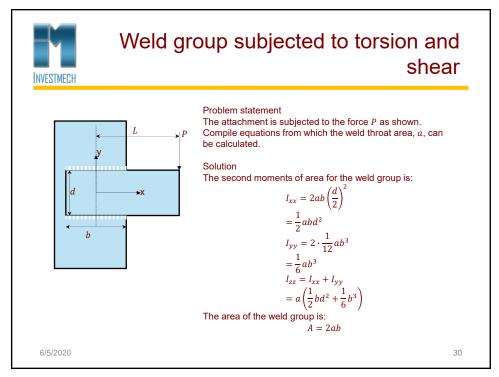

21


21



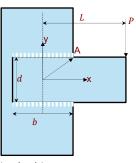






Shear stress due to shear force

Assume uniform distribution


Shear stress due to shear force and torque to be considered

$$\tau_{yT} = -\frac{PLx}{I_{zz}}$$

$$\tau_{xT} = \frac{PLy}{I_{zz}}$$

Shear stress due to torque
$$\begin{aligned} \tau_{yV} &= -\frac{1}{A} = -\frac{1}{2ab} \\ \tau_{yT} &= -\frac{PLx}{I_{zz}} \\ \tau_{xT} &= \frac{PLy}{I_{zz}} \end{aligned}$$
 From direction of stresses, critical point is Point A
$$x_A &= \frac{b}{2}; y_A = \frac{d}{2} \\ \tau_{yA} &= -\frac{PLb}{2a\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} - \frac{P}{2ab} \\ \tau_{xT,A} &= \frac{PLd}{2a\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} \end{aligned}$$
 O Calculate residual stress on the surface and compare
$$\tau &= \sqrt{\tau_{yA}^2 + \tau_{xA}^2} \leq 0.67^2 x_u \end{aligned}$$

 $\tau_{xT,A} = \frac{PLd}{2a\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)}$ Calculate residual stress on the surface and compare with factored resistance $\tau = \sqrt{\tau_{y,A}^2 + \tau_{x,A}^2} \leq 0.67^2 x_u$

 $y(x;y) = r(\cos\theta; \sin\theta)$

6/5/2020

31

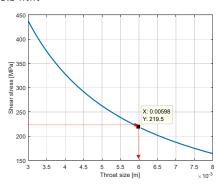
Substitute further:

further:

$$\tau_{y,A} = -\frac{PLb}{2a\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} - \frac{P}{2ab}$$

$$= \frac{P}{a} \left[-\frac{Lb}{2\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} - \frac{1}{2b} \right]$$

$$\tau_{x,A} = \frac{PLd}{2a\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)}$$


$$= \frac{P}{a} \left[\frac{Ld}{2\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} \right]$$

6/5/2020

Using the idea

- Say, d = 100 mm, b = 50 mm, L = 400 mm, P = 15 000 N
- Weld metal is E70XX, with ultimate tensile strength 490 MPa
 - o Factored resistance: $\tau_R = 0.67^2 \cdot 490 = 220 \, MPa$
 - o Calculate stress and find throat size. From graph it is $a \ge 6 mm$
 - \circ $e \ge 8.5 mm$

6/5/2020

33

33

Using the equation

VESTMECH

$$\begin{split} &\tau_{y,A} = \frac{P}{a} \left[-\frac{Lb}{2\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} - \frac{1}{2b} \right] \\ &= -\frac{1}{a} \cdot 7.0385 \times 10^5 \\ &\tau_{x,A} = \frac{P}{a} \left[\frac{Ld}{2\left(\frac{1}{2}bd^2 + \frac{1}{6}b^3\right)} \right] \\ &= \frac{1}{a} \cdot 1.1077 \times 10^6 \\ &\tau = \frac{1}{a} \sqrt{(7.0385 \times 10^5)^2 + (1.1077 \times 10^6)^2} \\ &= \frac{1.3214}{a} \ MPa \le 220 \\ &a = 0.006 \ m \\ &e \ge 8.4 \ mm \end{split}$$

6/5/2020

34

Test with forces

The factored shear resistance of 8 mm weld is:

The factored shear resistance of a fill weld is:
$$\tau'_R=0.67^2\cdot\frac{8}{\sqrt{2}}\cdot490=1.24\ kN/mm$$
 The weld lengths are 50 mm, giving:

$$V_R = 62.2 \ kN$$
 per weld

The torque that can be resisted is:

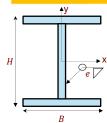
$$T_R = 2\frac{d}{2}V_R = 2 \cdot 0.05 \times V_R$$
$$= 6.2 \text{ kNm}$$

The applied torque is:

$$T = PL = 0.4 \times 15 = 6 \, kNm$$

 $T = PL = 0.4 \times 15 = 6 \, kNm$ This is less than the resistance

- The shear force resistance is 112.4 kN, more than the shear force or 15 kN
- This is not ideal, because at Point A the weld is subject to the highest shear stress due to torque and shear force combined
 - However, above approximation using forces give quick check


6/5/2020

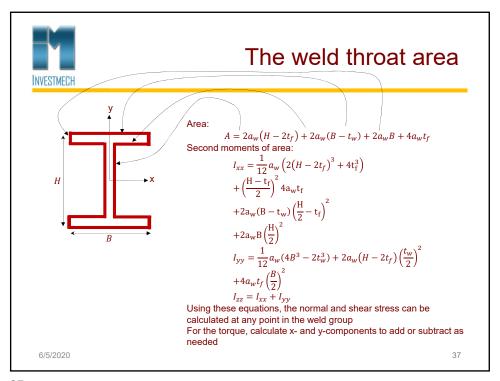
35

35

Welded end-connection

Problem statement

An I-beam with height, H, width B, flange thickness, t_f and web thickness, t_w is joined at the end by the all around weld of size e. A force, F is applied at the other end.

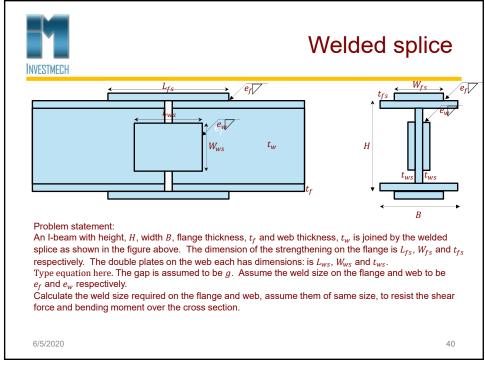

Give the equations from which the following can be calculated in the weld group:


- 1. Bending stress
- 2. Normal stress
- Shear stress
- Combined stress

Assume for all calculation that the weld throat is positioned at the outside lines of the cross-section.

This is a conservative assumption and will reduce calculations substantially. 6/5/2020

36



- Do an example with numbers in class
 - o Not with MSV 780

6/5/2020

39

39

The inserted metals in the gap

when of area around the x-axis:
$$I_{xx} = \frac{1}{12} (t_{ws} W_{ws}^3) \times 2 + 2 \left[y_f^2 (W_{fs} t_{fs}) + \frac{1}{12} (W_{fs} t_{fs}^3) \right]$$

$$y_f = \frac{H}{2} + \frac{t_{fs}}{2}$$

The area:

$$A = 2[W_{fs}t_{fs} + W_{ws}t_{ws}]$$

The bending stress distribution:

$$\sigma_b = \frac{M_x y}{I_{xx}} - \frac{M_y x}{I_{yy}}$$

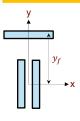
The bending stress distribution:
$$\sigma_b = \frac{M_x y}{I_{xx}} - \frac{M_y x}{I_{yy}}$$
 The bending force in the top and bottom section for M_x :
$$dF_{top} = \frac{M_x y}{I_{xx}} \cdot W_{fs} \cdot dy$$

$$F_{top} = \frac{M_x}{I_{xx}} \int_{\frac{1}{2}}^{2+t_{fs}} y \, W_{fs} dy$$

$$= \frac{M_x}{I_{xx}} \cdot \frac{W_{fs}}{2} \left[\left(\frac{H + 2t_{fs}}{2} \right)^2 - \left(\frac{H}{2} \right)^2 \right]$$

$$= \frac{M_x}{I_{xx}} \cdot \frac{W_{fs}}{8} \left[(H^2 + 4Ht_{fs} + 4t_{fs}^2) - H^2 \right]$$

$$= \frac{M_x}{I_{xx}} \cdot \frac{W_{fs}}{2} \left[Ht_{fs} + t_{fs}^2 \right]$$


6/5/2020

This force must be resisted by the weld on the flanges

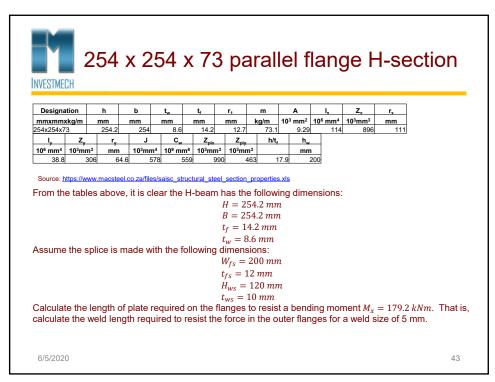
41

% bending moment resisted by the flange plates

If assumed that the forces on the flanges act at the centroid of the top and bottom plates, y_f , the percentage of the bending moment carried by the top and bottom

$$y_f = \frac{H}{2} + \frac{t_{fs}}{2}$$

 $y_f = \frac{H}{2} + \frac{t_{fs}}{2}$ The moment by the top and bottom frange plates:


$$M = F_{top}y_f + F_{bot}y_f$$
$$= 2 \cdot F_{top}y_f$$

$$=2\cdot F_{top}y_f$$
 The force in the top section (same as bottom) from previous slide:
$$M=2y_f\frac{M_x}{I_{tx}}\cdot\frac{W_{fs}}{8}\left[4Ht_{fs}+4t_{fs}^2\right]$$

$$=y_f\frac{M_x}{I_{xx}}\cdot\frac{W_{fs}}{4}\left[4Ht_{fs}+4t_{fs}^2\right]$$
 Ratio in moment by top and bottom flanges (M) vs. total moment (M_x) :
$$\frac{M}{M_x}=\frac{y_f}{I_{xx}}\cdot\frac{W_{fs}}{4}\left[4Ht_{fs}+4t_{fs}^2\right]$$

$$=\frac{y_f}{I_{xx}}\cdot W_{fs}\left[Ht_{fs}+t_{fs}^2\right]$$

$$\begin{split} &\frac{M}{M_x} = \frac{y_f}{I_{xx}} \cdot \frac{W_{fs}}{4} \left[4Ht_{fs} + 4t_{fs}^2 \right] \\ &= \frac{y_f}{I_{xx}} \cdot W_{fs} \left[Ht_{fs} + t_{fs}^2 \right] \end{split}$$

6/5/2020

42

NVESTI	MECH			FI	ang	ge v	wel	d c	alculation
Cross	s-section par	amete	rs						
Н	0.2542	m	В	0.2542	m	I _{xx}	1E-04	m ⁴	
t _f	0.0142	m	t _w	0.0086	m	Α	0.009	m ²	
Flange plate							The plates on the flanges		
W_{fs}	0.2	m	t _{fs}	0.012	m	A _{fs}	0.002	m ²	resist 97 % of the bending moment
Web	<u>plate</u>								
W_{ws}	0.12	m	t _{ws}	0.01	m	A _{ws}	0.001	m ²	
Cross	s-section par	amete	rs for the						
y_f	0.1331	m	I _{xx}	8.79725E-05	m ⁴				
g	0.005	m							
Bendi	ng moment:		M _x	1.79E+05	Nm				
Force in top plate:			F _z	738 698	N				
				739	kN				
% Moment by flange plates:			97%						
Weldi	ng on flanges	<u> </u>							
Xu	4.90E+08	Pa	f _{weld}	1.73E+03	N/mm				To be continued in 2018
e _{fs}	0.005	m	L _{weld}	4.26E+02	mm				
a _{fs}	0.00354	m	L _{fs} /2	213	mm				
6/5/2020		L _{fs}	426	mm	Gap added			44	

Shear flow and shear stress in membraned sections

Not in your scope

6/5/2020

45

45

References

Cross section properties

https://www.macsteel.co.za/files/saisc structural s teel section properties.xls

6/5/2020

46